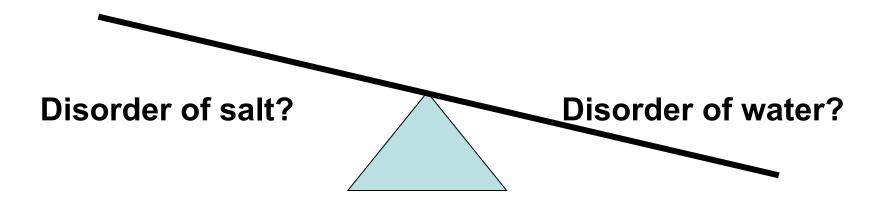


Disorders of water

Detlef Bockenhauer

Great Ormond Street **WHS** Hospital for Children **NHS Trust**


Network Kidney Diseases (ERKNet)

How do we measure water?

How do we measure water?

- Not directly!
- Reflected best in Na concentration
- Water overload => Hyponatraemia
- Water deficiency => Hypernatraemia
- Dysnatraemia: is it salt? Or water?

True or false?

 The kidneys are to provide electrolyte homeostasis. Therefore, in hyponatraemia, the kidneys should preserve sodium (minimise renal sodium losses).

True or false?

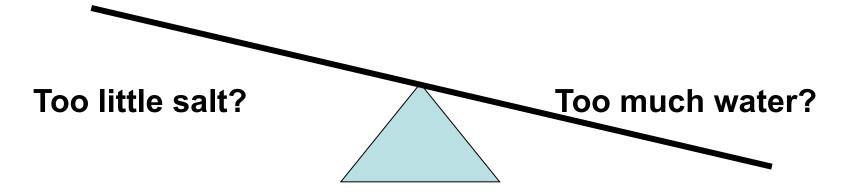
 The urine sodium concentration can help distinguish between renal (cerebral/pulmonary) salt wasting and SIADH.

Hyponatraemia

Why is the sodium low?

- Too little salt
 - Weight should be decreased
 - Signs of dehydration/volume depletion

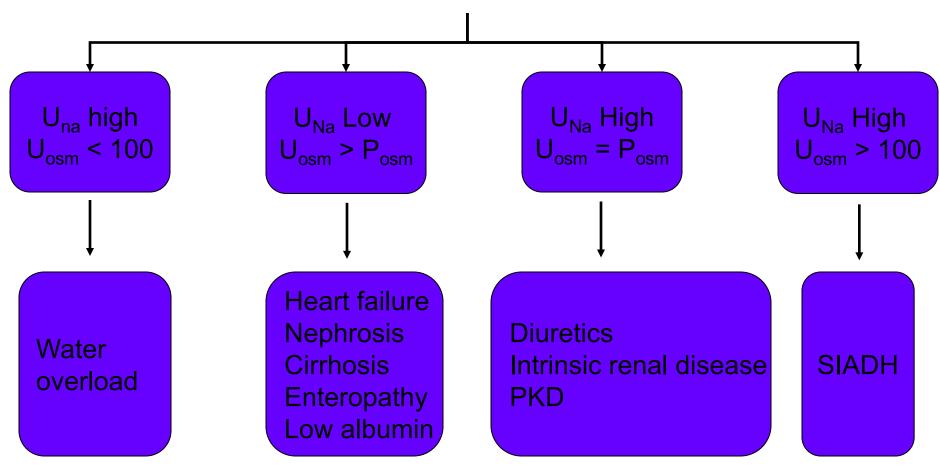
- Too much water
 - Weight should be stable or increased
 - Patient is eu- or hypervolaemic


case 1

- 6-months old boy with astrocytoma
- Receives vincristine and carboplatin
- 10 days later presents for routine follow-up
- Examination: well perfused, wt: 4.7 kg (+0.2 kg), BP: 82 mmHg

biochemistries	plasma	urine	unit
Sodium	125	32	mmol/l
osmolality	255	677	mOsmol/kg

Is this salt wasting? Or water excess?


 Do we need to prescribe salt? Or do we need to restrict/eliminate water?

Clinical euvolemic or edematous Increased body weight

Too much water

Further course

date	Day 4	Day 8	Day 11	Day14
weight	4.44	4.87	4.9	4.86
BP	90	120	120	145
in	462	836	917	707
out	395	593	700	486
serum sodium	126	133	135	139
serum osmolality	256	257	275	284
urine sodium	152	158	268	313
urine osmolality	657	569	610	744
sodium in (mmol/kg)	10	15	19	14

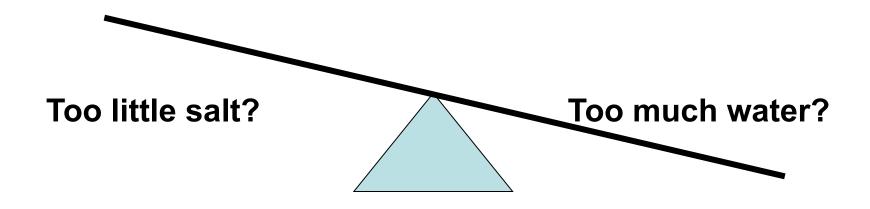
Further course

date	Day 4	Day 8	Day 11	Day14
weight	4.44	4.87	4.9	4.86
BP	90	120	120	145
in	462	836	917	707
out	395	593	700	486
serum sodium	126	133	135	139
serum osmolality	256	257	275	284
urine sodium	152	158	268	313
urine osmolality	657	569	610	744
sodium in (mmol/kg)	10	15	19	14

Key message

Sodium is reabsorbed to preserve intravascular volume and in response to renal perfusion

Kidney does not sense or detect serum sodium concentration


Case 2

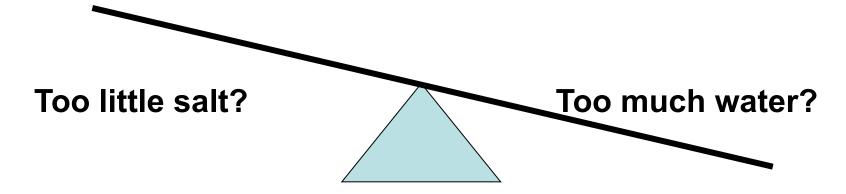
- 3-months old infant referred for persistent hypertension
- Referred by endocrinology as BP>100 mmHg despite treatment with 4 antihypertensive drugs (amlodipine, propranolol, furosemide, captopril)
- Ongoing salt supplementation (7.5 mmol/kg/d) for hyponatraemia since birth

History

- Initial presentation in neonatal period with hyponatraemia and hypoglycaemia
- Brain MRI Small anterior pituitary and ectopic posterior pituitary
- Diagnosis of panhypopituitarism
- Commenced cortisone, thyroxine and growth hormone
- Salt supplementation with subsequent hypertension

Hyponatraemia: The first critical decision

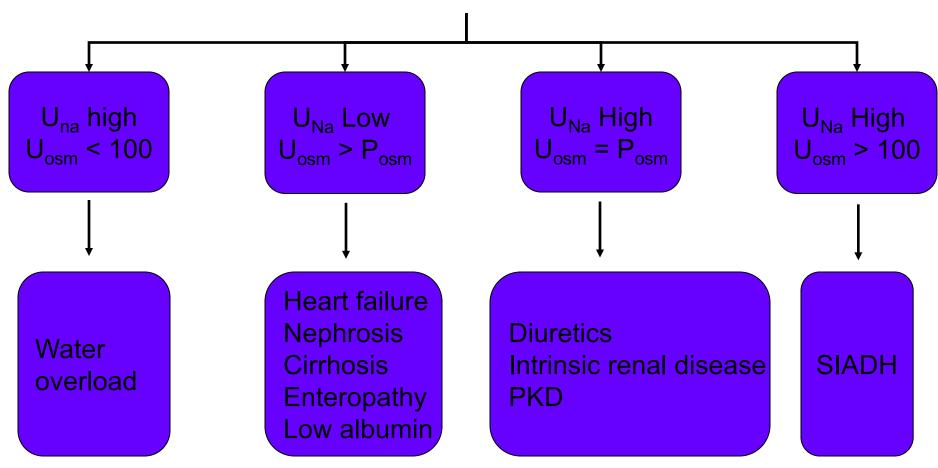
How to decide ???


At admission (age 3 months)

- Well perfused, no oedema
- BP: 104 mmHg systolic

Plasma		
Sodium (mmol/l)	130	
Osmolality	267	
Urine		
Sodium (mmol/l)	99	
Osmolality	391	

Is this salt wasting? Or water excess?


 Do we need to prescribe salt? Or do we need to restrict/eliminate water?

Clinical euvolemic or edematous Increased body weight

Too much water

Admission to renal ward

- Step 1: Stop Sodium supplements
- Step 2: Fluid restriction


	Admission	Day 1
Age (days)	105	106
Fluid intake (mls/kg/d)	free	80
Sodium suppl (mmol/kg/d)	7.5	0
Weight (g)	4500	4490
Plasma		
Sodium (mmol/l)	130	131
Osmolality (mOsm/kg)	267	268
Urine		
Sodium (mmol/l)	99	135
Osmolality (mOsm/kg)	391	579

BP normalised All anti-hypertensives stopped

Fluid restriction in SIADH

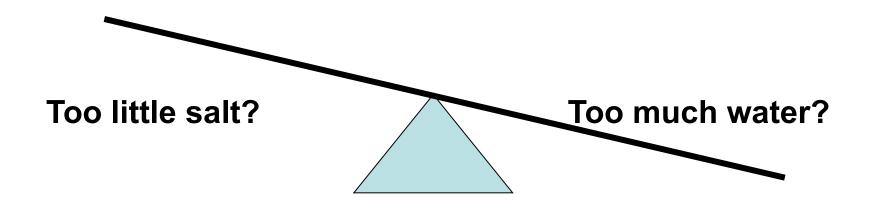
- Often unsuccessful, as patients also have increased thirst
- Difficult in infants, as fluid and caloric input is coupled

Tolvaptan – Vasopressin 2 antagonist

Course in hospital-2

Step 3: treatment with tolvaptan

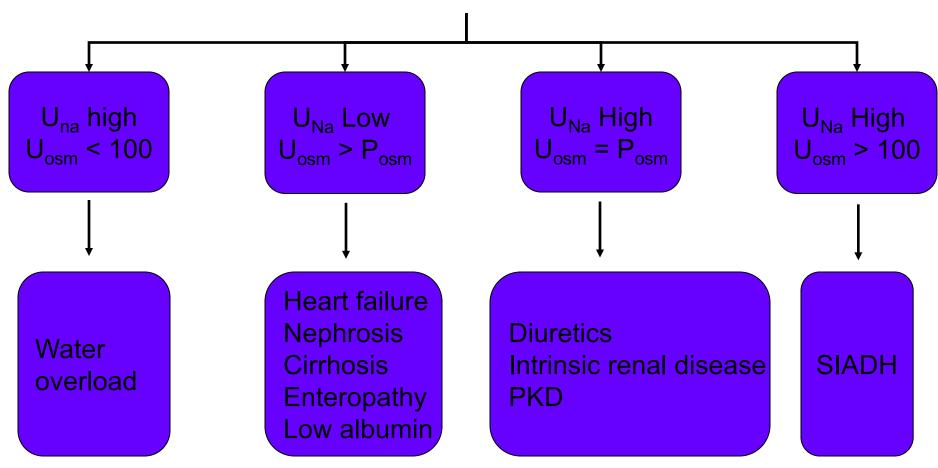
	Admission	Day 1	Day 2	Day 5	Day 17	Day 36
Age (days)	105	106	107	110	122	141
Tolvaptan (mg/kg)			0.8	8.0	Stop	0.2
Fluid intake (mls/kg/d)	free	80	free	free	80	free
Sodium suppl (mmol/kg/d)	7.5	0	0	0	0	0
Weight (g)	4500	4490	4380	4278	4680	4960
Plasma						
Sodium (mmol/l)	130	131	138	153	130	139
Osmolality (mOsm/kg)	267	268	288	314	265	287
Urine						
Sodium (mmol/l)	99	135	9	<5	75	8
Osmolality (mOsm/kg)	391	579	49	80	415	57


Hyponatraemia-case 3

- 11-months old girl referred for assessment of hyponatraemia, first noted incidentally during investigations for viral illness and confirmed several times subsequently
- Examination: well perfused, BP: 90 mmHg

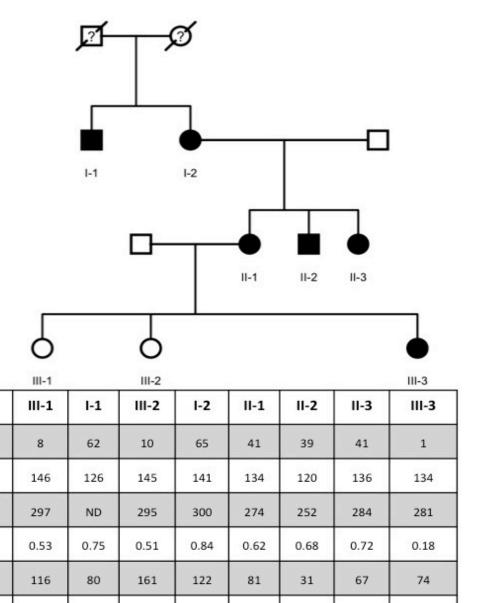
biochemistries	plasma	urine	unit
Sodium	121	45	mmol/l
osmolality	249	252	mOsmol/kg

Diagnosis?


- Too much water?
- Too little salt?

Clinical euvolemic or edematous Increased body weight

Too much water



Family History

- Mother and maternal grandmother were known to have had hyponatraemia.
 Maternal uncle has developmental delay and recurrent hyponatraemia (often with seizures)
- Mum and grandmother "don't drink"

Diagnosis?

- Nephrogenic Syndrome of inappropriate antidiuresis
- X-linked inherited
- Gain-of-function in AVPR2: R137C/L
- Females usually less affected

Age [years]

P-Osm

[mg/dl]

U-Osm

P-Na [mmol/l]

[mosmol/kg] P-Creatinine

U-Na [mmol/l]

[mosmol/kg] U-AVP [log pg/

min/Cosm] Genetics 1070

1.64

WT

485

ND

R137C

978

1.39

WT

741

0.59

R137C

437

ND

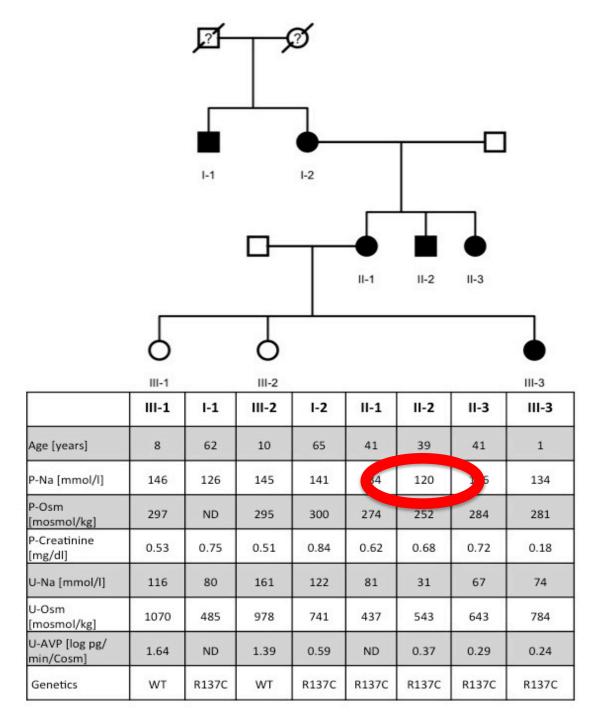
R137C

543

0.37

R137C

643


0.29

R137C

784

0.24

R137C

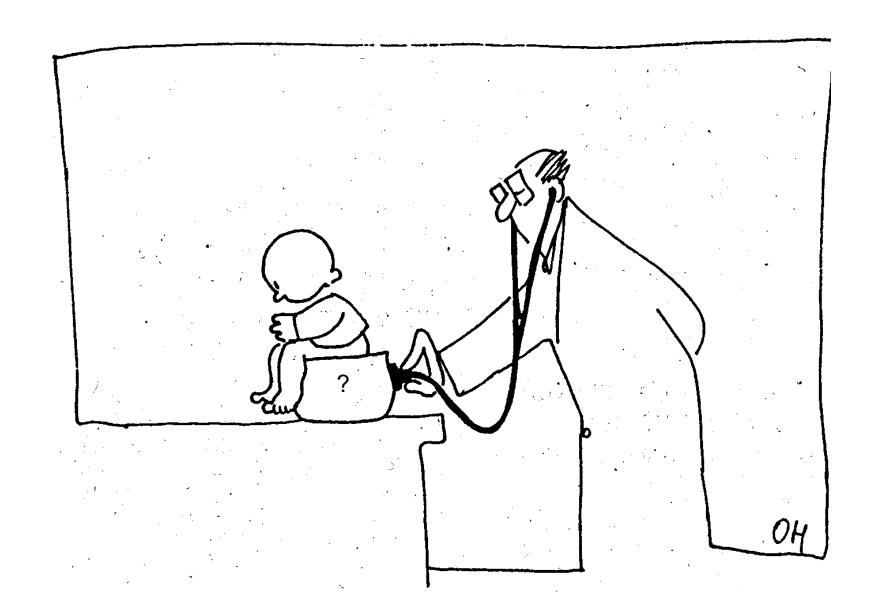
Treatment

- Intuitive by patients!
- ?Increased osmotic load during infancy (urea)

Hypernatraemia

Why is the sodium high?

- Too little water
 - Weight should be decreased
 - Signs of dehydration/volume depletion


- Too much salt
 - Weight should be stable or increased
 - Patient is eu- or hypervolaemic

Case 1

- 18-months old boy presents with recurrent vomiting and ?mild developmental delay.
- Previously presented multiple times to GP and A&E with vomiting, thought to be reflux, but reassured due to good urine output: wets nappies 8-10 times per day
- Seen by private GI and scoped: nl
- Examination: well, wt: 9.8 kg (2nd %ile), height 80 cm (25th %ile)

Laboratory Investigations

biochemistries	plasma	urine	unit
Sodium	159	14	mmol/l
osmolality	328	78	mOsmol/kg

Further course

- DDAVP test: no response => Dx of NDI
- Brain MRI scheduled because of ?developmental delay
- Patient fastened prior and scan delayed: Laboratory investigation at the time: Na 179 mmol/l
- What is the appropriate treatment?

Treatment and further course

- Received 3 bolus of 20 ml/kg of 0.9% saline
- Subsequent plasma Na: 198 mmol/l
- Patient becomes unresponsive and needs intubation and ventilation
- MRI brain c/w myelinolysis
- Once extubated, he has severe paralysis, but subsequent partial recovery: able to walk again after 2 weeks

Tonicity balance

Na: 154x0.6=92

mmol

H₂O: 0.6 litre

Na:+89 mmol

 $H_20: \pm 0$

Na: 5 x 0.6=3 mmol

H₂O: 0.6 litre

Key messages Hyponatraemia

- Hyponatraemia is usually due to an excess in water, not a deficiency in sodium
- Kidneys do not sense or detect serum sodium
- Sodium is reabsorbed to preserve intravascular volume and in response to renal perfusion
- There is no biochemical test to distinguish salt wasting from water excess. This can only be done by clinical parameters!

Key messages Hypernatraemia

- Hypernatraemia is usually a deficiency in water, not an excess of sodium
- Beware of a dehydrated patient with "good" urine output!
- Do not give salt to a patient with NDI!
- Sometimes, we have to use our brain, instead of following protocols
- A tonicity balance can help to understand dysnatraemias

True or false?

 The kidneys are to provide electrolyte homeostasis. Therefore, in hyponatraemia, the kidneys should preserve sodium (minimise renal sodium losses).

False

True or false?

The urine sodium concentration can help distinguish between renal (cerebral/pulmonary) salt wasting and SIADH.

False