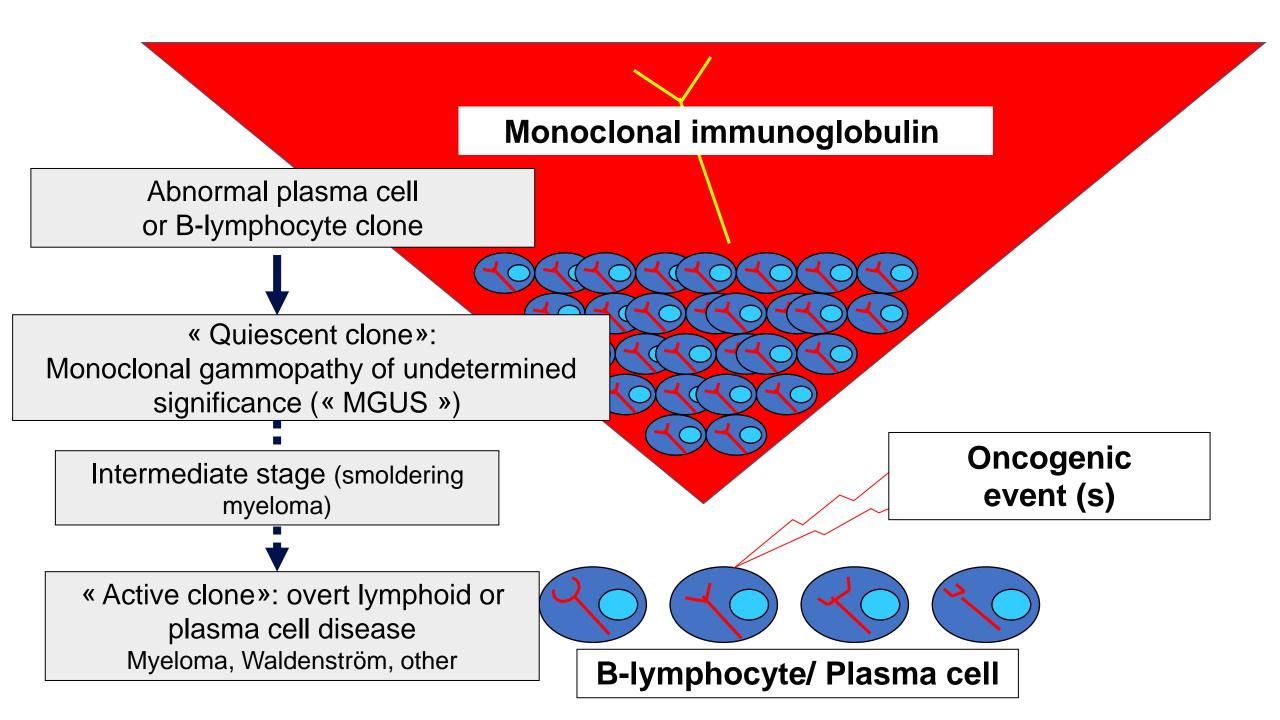
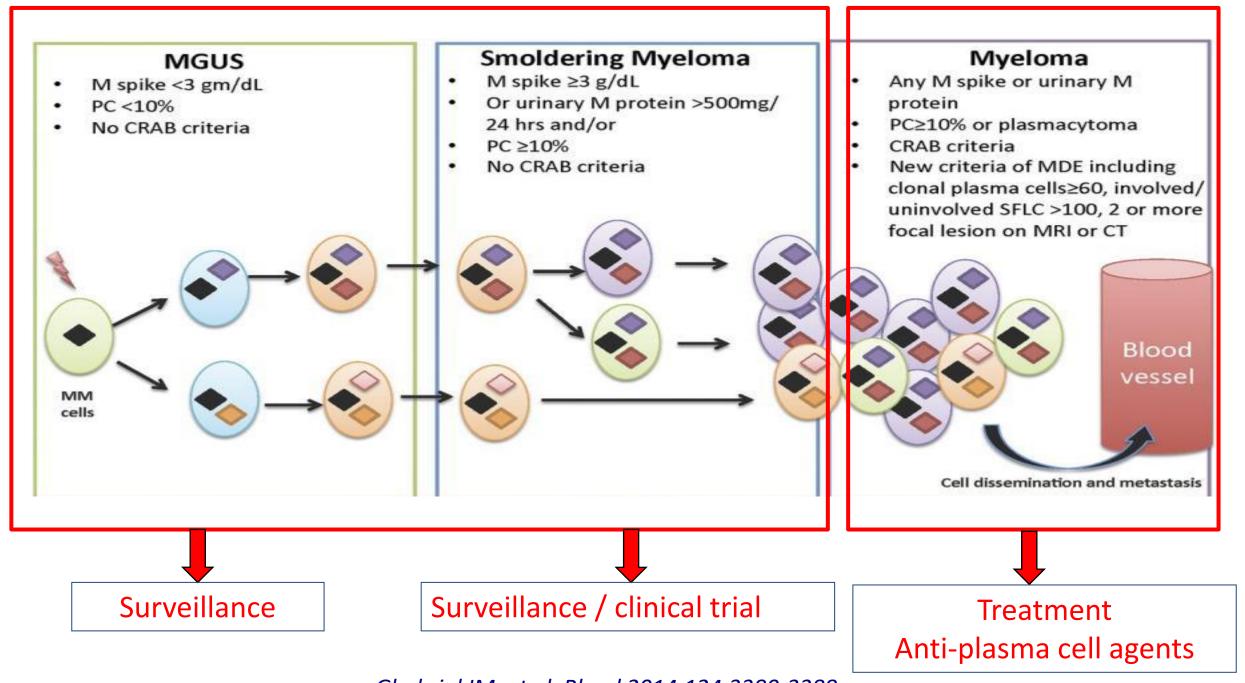


The European Rare Kidney Disease Reference Network

WELCOME TO


ERKNet Advanced Webinars on Rare Kidney Disorders


Date: 16 February 2021

Topic: Paraprotein associated disease

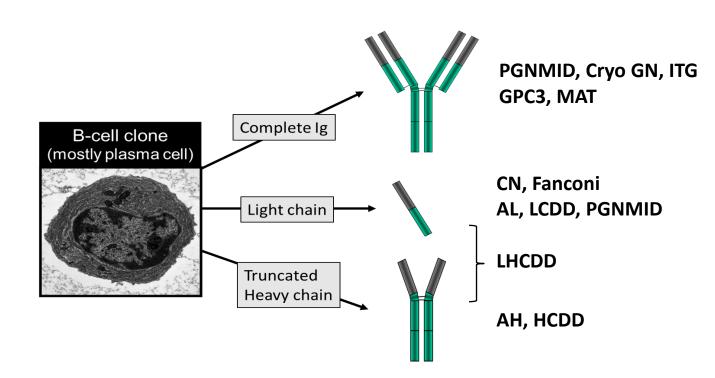
Speaker: Frank Bridoux

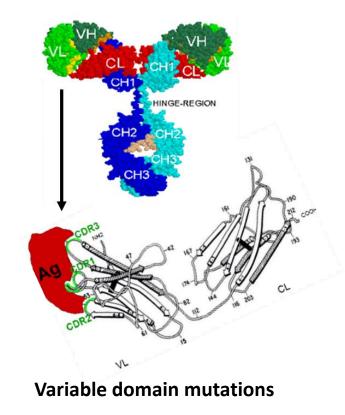
Moderator: Jack Wetzels

Ghobrial IM, et al. Blood 2014;124:3380-3388

Concepts of MGRS and MGCS

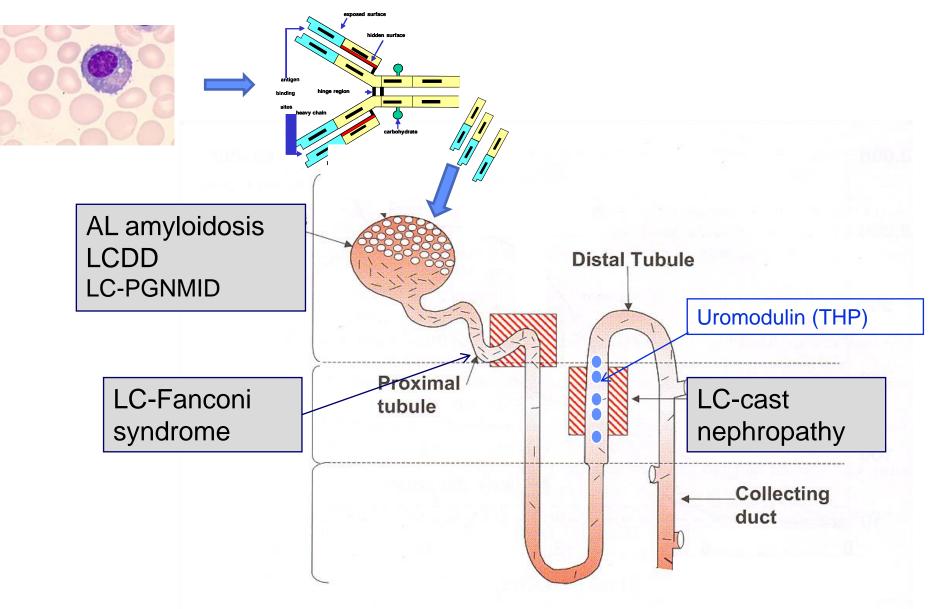
Monoclonal gan undetermined o

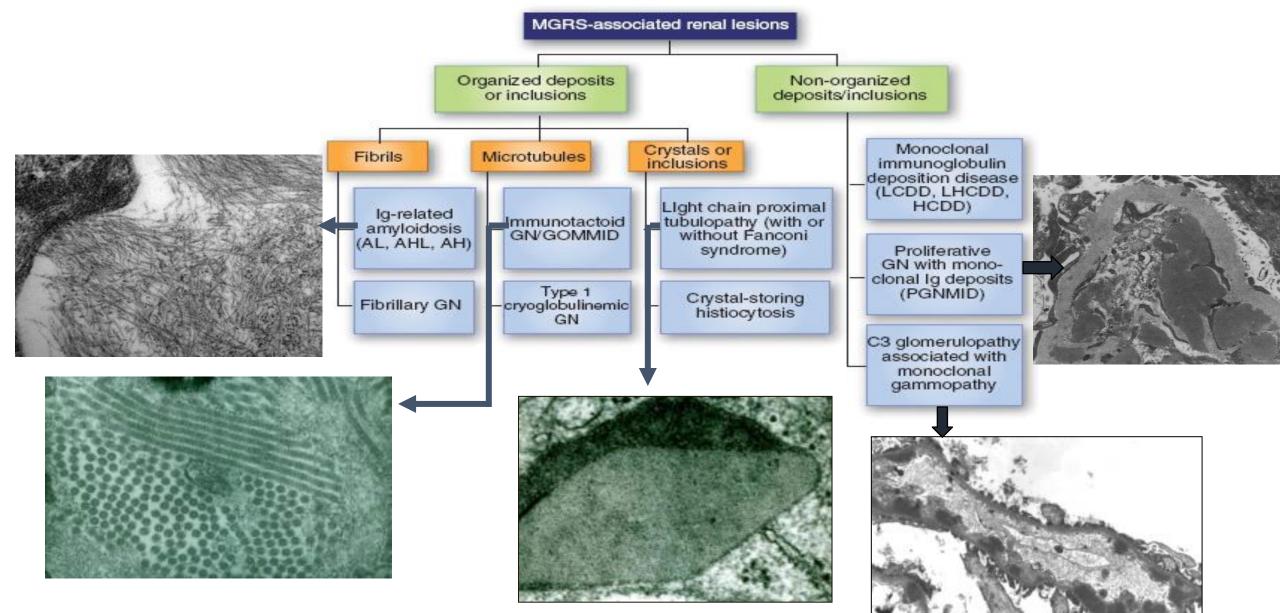

Nelson Leung,^{1,2} Frank Br Angela Dispenzieri,² Kevi Gammopathy Research G


¹Division of Nephrology and Hype Transplantation, University Hospi Birmingham, United Kingdom; ⁵D France, France; and ⁷Division of MGR(C)S = small plasma cell or B-cell clone + Renal disease (or other organ/tissue involvement) directly (deposition) or indirectly (autoantibody activity, complement activation, production of cytokines) induced by the secreted monoclonal lg

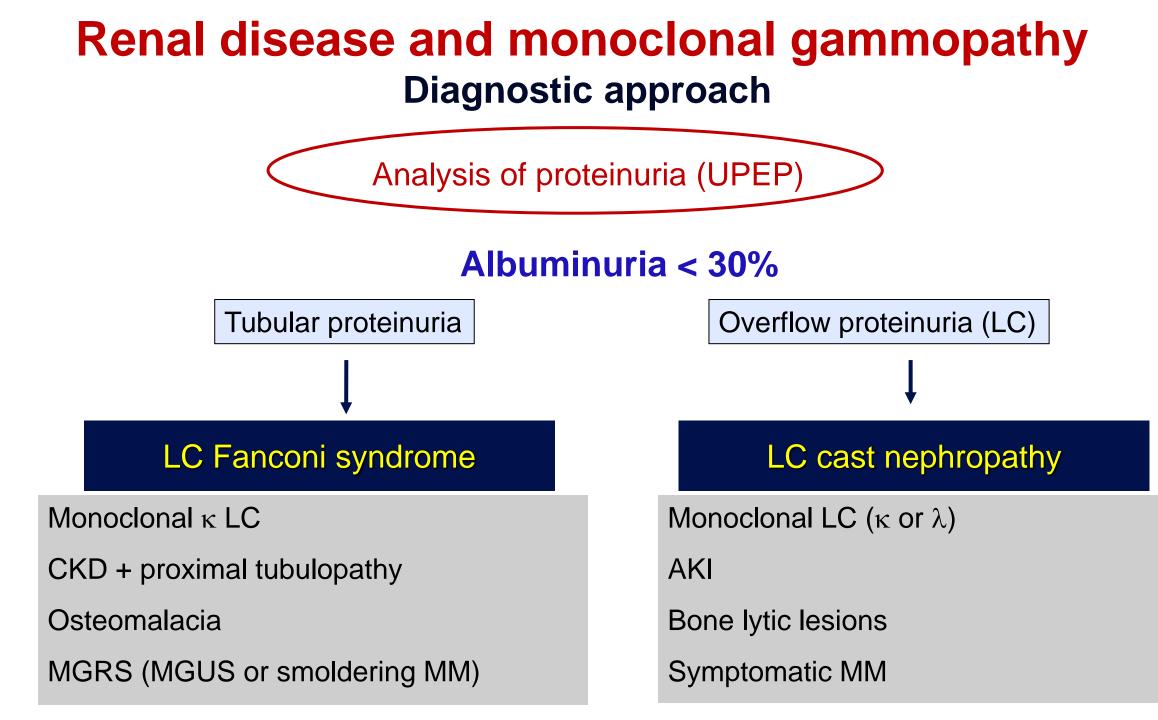
> Treatment = clone-targeted chemotherapy

Renal toxicity of monoclonal immunoglobulins


- Intrinsic property, not all monoclonal Igs are nephrotoxic !
- Nephrotoxity of monoclonal Igs determined by:
 - molecular characteristics (mutations in the variable domain++)
 - functional properties of monoclonal Ig : complement activation, autoantibody activity...)
- Independent of the tumor mass (exception: LC cast nephropathy)



Sirac C. Nat Rev Nephrol 2018; 14:246-64


Renal toxicity of Ig light chains

Classification of MGRS-associated renal lesions

Bridoux F. Kidney Int 2015, Leung N Nat Rev Nephrol 2019

Renal disease and monoclonal gammopathy Diagnostic approach

Albuminuria > 30-40% → Glomerular disease → type?

Kidney biopsy:

- Light microscopy (Congo-red staining ++)
- Immunofluorescence (antibodies specific for Ig LC ± IgG sub-classes)
- Electron microscopy (EM)
- If required: LMD/LC-tandem MS (proteomics), immuno-EM

Monoclonal gammopathy and renal disease When to perform a kidney biopsy?

- Prevalence of monoclonal gammopathy increases with age:
 - 3.2% after 50 yrs
 - 7.5% after 85 yrs
- Prevalence of MGRS among patients with MGUS and renal diseases: 40%
- Indications for a kidney biopsy in a patient with MGUS and renal disease:
 - No other cause
 - other cause but atypical presentation or disease course (unexplained increase in proteinuria or decrease in GFR)
 - Renal manifestations and monoclonal gammopathy in a young patient (aged <50 yrs)
- Incidence of post-biopsy hemorrhagic complications (~ 4%) similar in MGRS vs other nephropathies

Leung N, et al. Nat Rev Nephrol 2019; 15:45-59 Klomjit N, et al. JASN 2020; 31: 2400-11

Hematological workup in MGRS

Characterization of the monoclonal gammopathy :

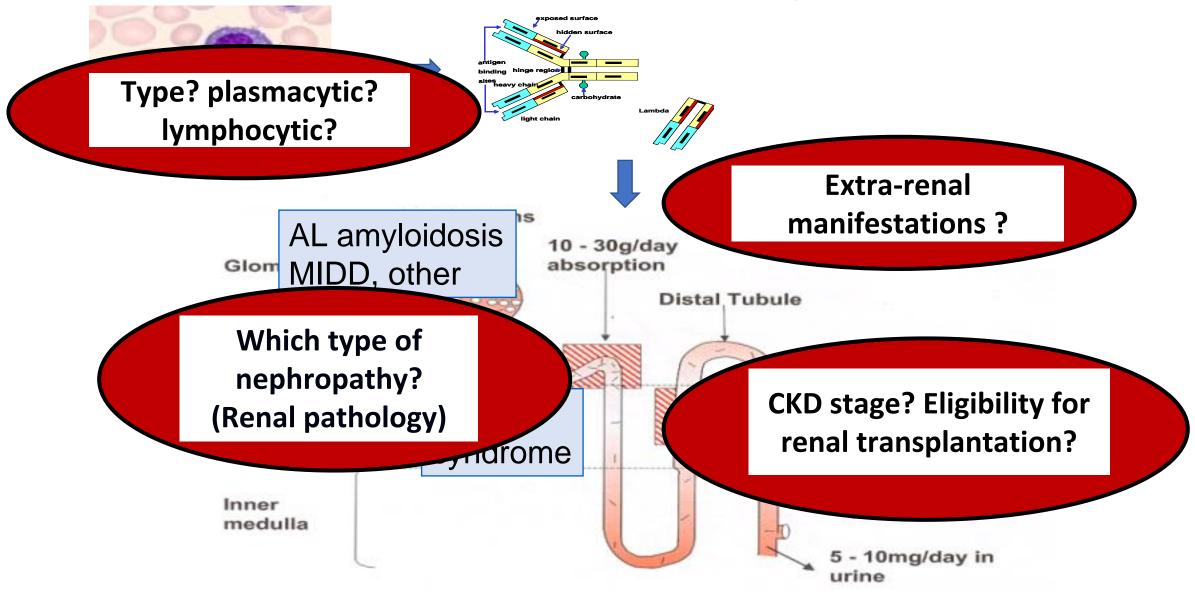
- Serum and urine protein electrophoresis (quantification of M-spike) and immunofixation
- Serum FLCs :

Kappa/lambda ratio (Binding Site): 0.26-1.65 if normal renal function 0.34-3.10 if «renal insufficiency »

- Immunoblot: sensitivity ++, identification of IgG sub-class, CH1 deletion....
- Mass spectrometry ("Mass-fix")

Identification of the pathogenic clone :

- Bone marrow studies:


Flow cytometry (search for plasma cell AND B-cell clone) +/-molecular biology (NGS) **Cytogenetics** (FISH, NGS) : MYD88 L265P mutation (Waldenström), t(11;14) (AL amyloidosis)....

Immunophenotyping of circulating lymphocytes (CLL)

CT-scan of thorax-abdomen-pelvis (lymph node biopsy) +/- PET -scan (IgM)

Fermand JP. Blood 2013; 122: 3583-90 Leung N. Nat Rev Nephrol 2019; 15:45-59

MGRS: principles of management

Fermand JP. Blood 2013; 122: 3583

MGRS : principles of chemotherapy

Adapted to the nature of the underlying clone

- **Plasmacytic**: anti-myeloma agents (bortezomib-based)
- Lymphocytic: treatment as in WM or B-cell lymphoma (rituximab-based)
- When the clone is not identified :
 - ✓ IgG, IgA or LC-only monoclonal gammopathy : anti-myeloma agents
 - ✓ IgM monoclonal gammopathy: rituximab-based

Adapted to pharmacokinetics (renal elimination)

- **Alkylating agents** : cyclophosphamide, bendamustine, (melphalan : dose adaptation)
- **Proteasome inhibitors** : bortezomib, carfilzomib, ixazomib
- Imids: thalidomide, pomalidomide (lenalidomide : dose adaptation)
- Monoclonal antibodies:

✓ Anti-CD20: rituximab, ofatumumab,...

✓ Anti-plasma cells: daratumumab (anti-CD38)

Taking into account potential nephrotoxicity (carfilzomib)

Fermand JP, et al. Blood 2013; 122: 3583-90

MGRS : assessment of treatment efficacy

- Organ response is delayed after hematological response
- Treatment efficacy = quality of hematological response

✓ Measurable FLCs (AL amyloidosis criteria)
 PR: ≥ 50% reduction in dFLC (dFLC = pathogenic FLC – other LC isotype)
 VGPR : dFLC < 40 mg/L (or dFLC reduction > 90%)
 CR : negative serum and urine immunofixation with normal FLC ratio

✓ **Normal FLCs**: response based on M-spike and immunofixation

Question 1:

Among the following tests, which one should not be used in the diagnostic workup of MGRS :

- 1. Serum immunofixation
- 2. Urine immunofixation
- 3. Serum free light chains
- 4. Urine free light chains
- 5. Bone marrow smears or biopsy

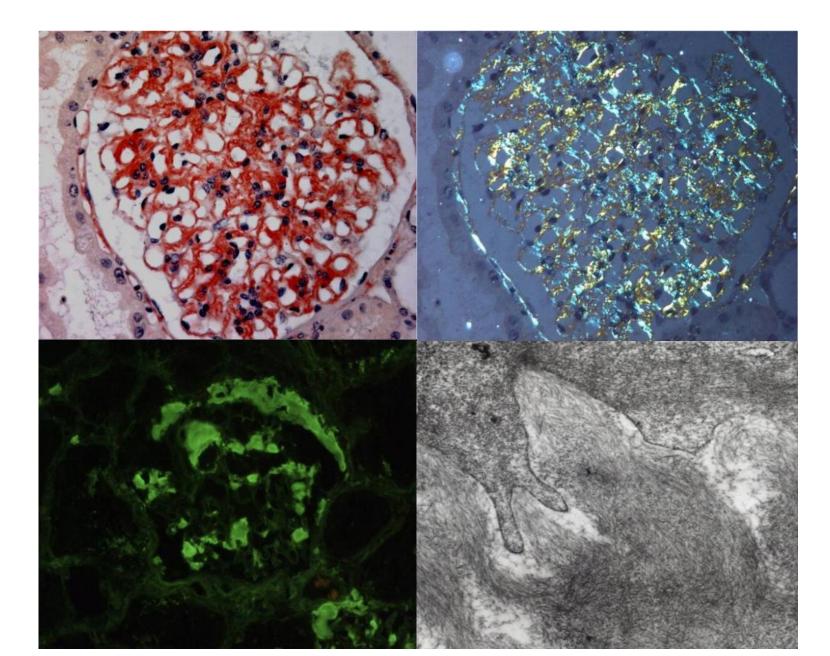
Question 1:

Among the following tests, which one should not be used in diagnostic workup of MGRS :

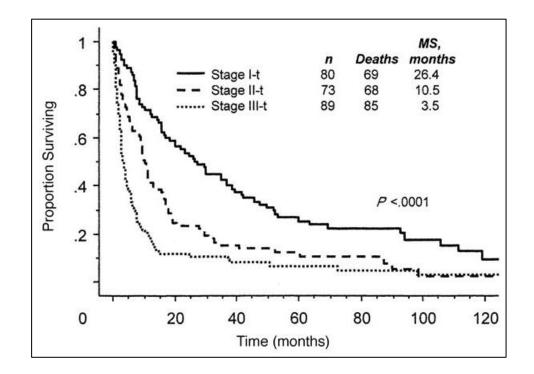
- 1. Serum immunofixation
- 2. Urine immunofixation
- 3. Serum free light chains
- 4. Urine free light chains
- 5. Bone marrow smears or biopsy

Systemic AL amyloidosis

• Epidemiology:

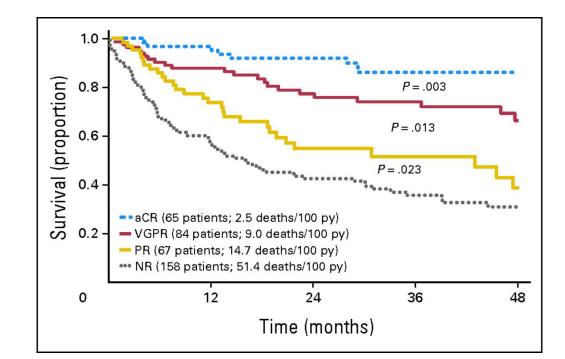

- Incidence: 9 to 12 cases/million/yr
- Age at diagnosis: 65 yrs, slight male predominance

• Renal disease :


- 60-70% at diagnosis
- Proteinuria >1g/24h : >60% (median 5 g/d), nephrotic syndrome : >50%, decreased eGFR 45%
- Hypertension and hematuria uncommon, slowly progressive CKD with polyuria possible
- Cardiac disease (60%): prognostic factor ++
 - NT-proBNP and troponin serum levels (Mayo Clinic staging)
- Other common manifestations: liver disease, peripheral/autonomic neuropathy, GI tract deposits
- Underlying clonal disorder: usually plasmacytic and corresponding MGR(C)S (80%)
 - Symptomatic MM <20%
 - Median bone marrow plasma cell infiltration 7%, t(11;14) ~ 50%
 - Waldenström or B-cell lymphoma rare (IgM monoclonal gammopathy)
 - Detectable serum/urine monoclonal gammopathy with abnormal FLCs (90%)
 - Over-representation of lambda LC (V λ 6 if renal disease)

Desport E, et al. Orphanet J Rare Dis 2012

Renal AL amyloidosis



AL amyloidosis: prognostic factors

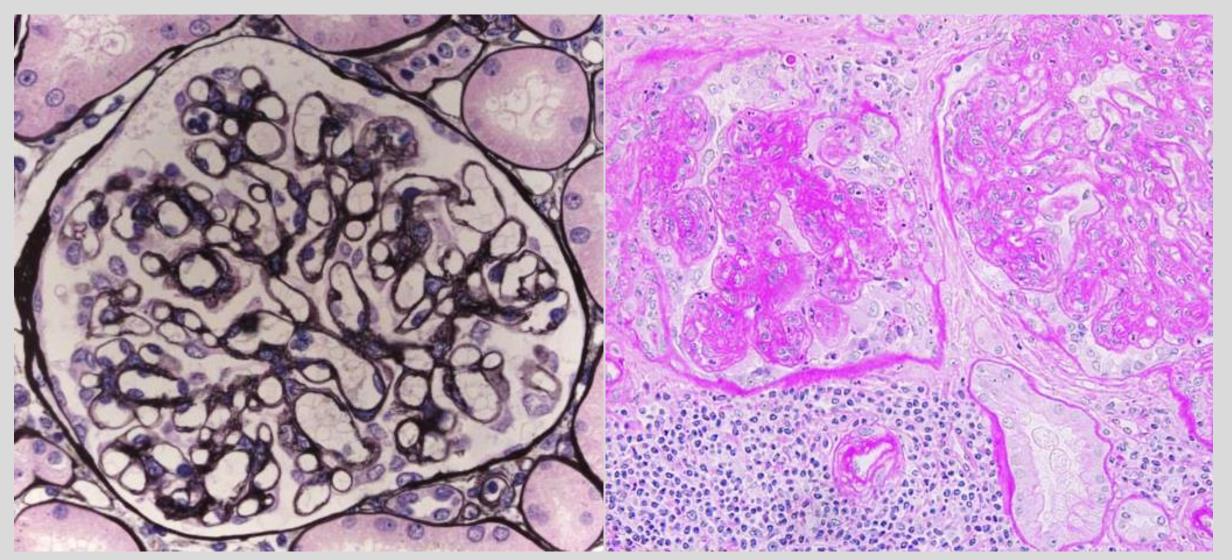
Severity of cardiac disease (Mayo Stage)

Dispenzieri A, et al. J Clin Oncol. 2004;22:3751-7

Quality and rapidity of hematological response

Palladini G, et al. J Clin Oncol. 2012;30:4541-9

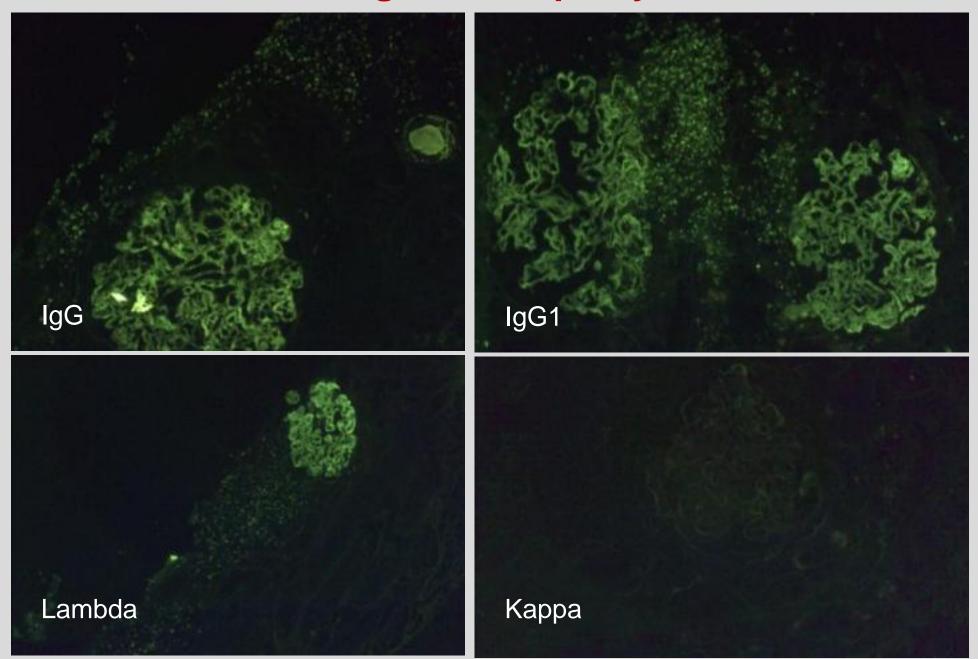
• Pathological definition:

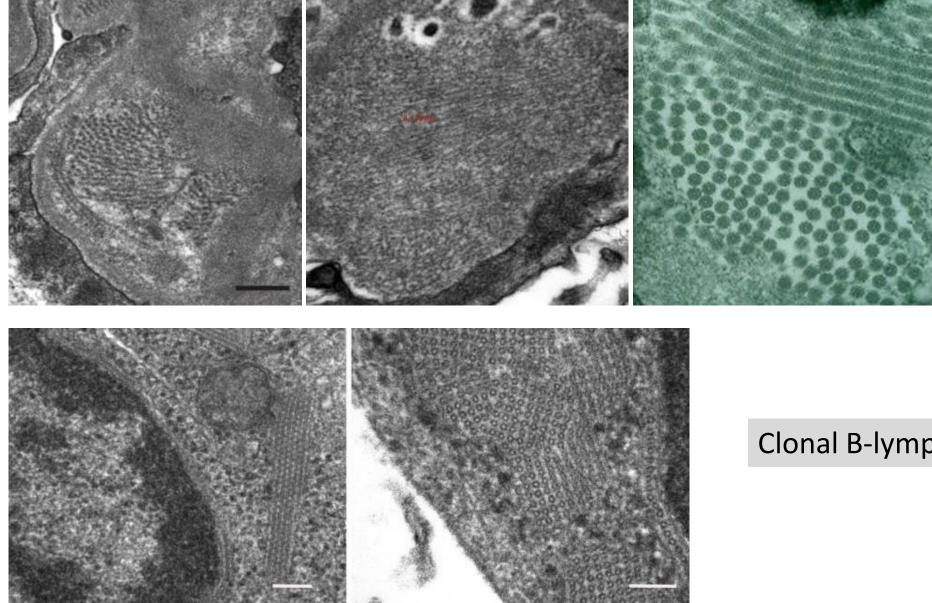

- -monotypic IgG deposits
- -organized into microtubules (10-50 nm)
- -distinct central hollow core (magnification < 50.000)
- -cryoglobulins negative
- Extremely rare! Biopsy incidence <0.1%
- Clinicopathologic characteristics
 - -Age at diagnosis ~ 60 yrs
 - Renal manifestations: chronic glomerular disease
 Proteinuria (>2 g/24h) : >90%
 - Nephrotic syndrome, hematuria, renal insufficiency, hypertension > 50%
 - -Extra-renal deposits exceptional: skin, peripheral nerve

• Hematological characteristics

- Mostly lymphocytic clonal disorders (MGRS ~ 50%, CLL~ 50%)
- -Detectable monoclonal gammopathy >60%
- –Hypocomplementemia ~ 30%

Bridoux F. et al. Kidney Int 2002; 62: 1764-75 Rosenstock JL et al. Kidney Int 2003; 63: 1450-61 Javaugue V, et al. Kidney Int 2021; 99; 421-30

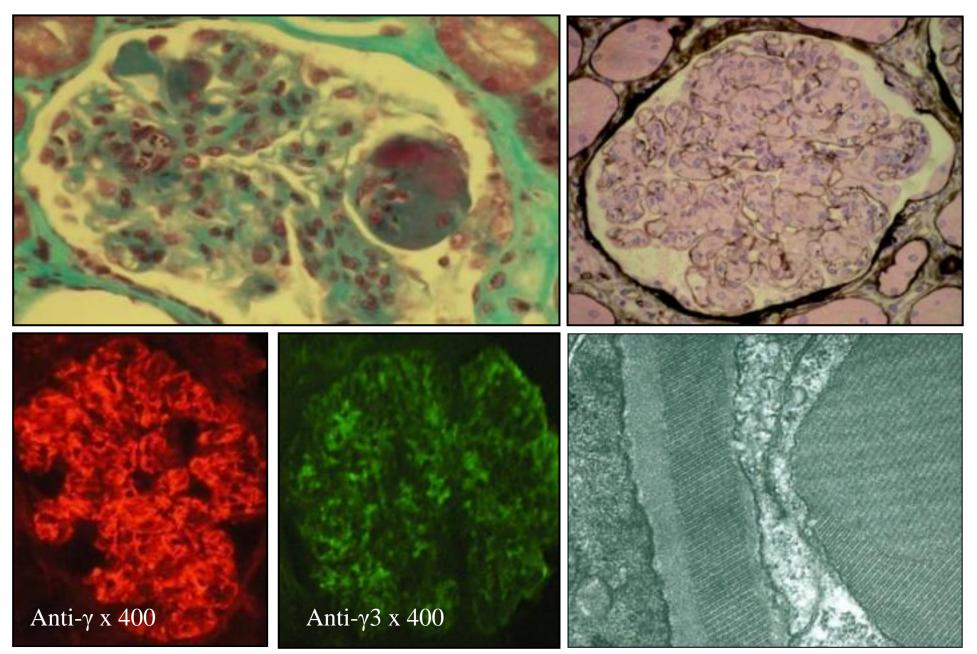

Characteristics	No. of patients $(N = 27)$
Clinical characteristic	
Age, yr	61 (30–79)
Male sex	18 (67)
Hypertension	15 (56)
Proteinuria, g/d	6 (1-23)
Nephrotic syndrome	19 (70)
Microscopic hematuria	20 (74)
Serum creatinine, mg/d	1.5 (0.6-6.5)
eGFR, ml/min per 1.73 m ²	56 (11–108)
Chronic kidney disease ≥3	17 (63)
Extrarenal manifestations	1 (4)
Hematologic characteristics	
Measurable SPEP and/or UPEP monoclonal spike	4 (15)
Positive serum and/or urine immunofixation	19 (70)
Abnormal serum-free light chain ratio	3/16 (19)
IgG subclass by serum immunoblot analysis ($n = 16$)	
lgG1	9 (56)
lgG2	5 (31)
lgG3	2 (13)
laG4	0
Diagnosis	
CLL ^a	10 (37)
Small lymphocytic lymphoma	3 (11)
MGRS	14 (52)
Underlying B-cell clone	
Lymphocytic	16 (60)
Plasmacytic	2 (7)
Unknown	9 (33)



Atypical MGN

MPGN and malignant B-cell infiltration

Javaugue V et al. Kidney Int 2021;99:421-30



Glomerulus

Clonal B-lymphocyte

Type 1 cryoglobulinic glomerulonephritis

Type 1 cryoglobulinemia

• Definitions:

- Type 1: single monoclonal Ig; type 2: monoclonal Ig (IgM) + polyclonal (IgG); type 3: polyclonal Igs

• Renal disease in type 1 cryoglobulinemias:

- Prevalence: ~ 30%
- Chronic glomerular disease: CKD, proteinuria, hematuria, (50-75%), hypertension +++ (80 %)
- Flares: nephrotic syndrome, acute nephritic syndrome, severe AKI with oliguria

• Extra-renal manifestations are common:

Purpura, skin ulcers, Raynaud phenomenon, polyarthralgias, peripheral neuropathy, Cardiomyopathy, pulmonary hemorrhage,...(type 1 < type 2)

Terrier B et al. Medicine 2013; 62: 61-8 Harel S et al. Br J Hematol 2015; 168(5):671-8

Type 1 cryoglobulinic glomerulonephritis

Immunologic and hematologic characteristics :

- -Hypocomplementemia (50%), negative rheumatoid factor (≠ type 2 cryo)
- Cryoglobulinemia:
 - IgG (predominant if renal disease, mostly IgG3 and IgG1), IgM, IgA, + kappa LC (80%)
 - Inconstantly detected, particularly in crystalcryoglobulinemia

-Hematological disease:

- MGRS (50%)
- Symptomatic disease (50 %): Waldenström, CLL, lymphoplasmocytic lymphoma, MM (rare)

Treatment :

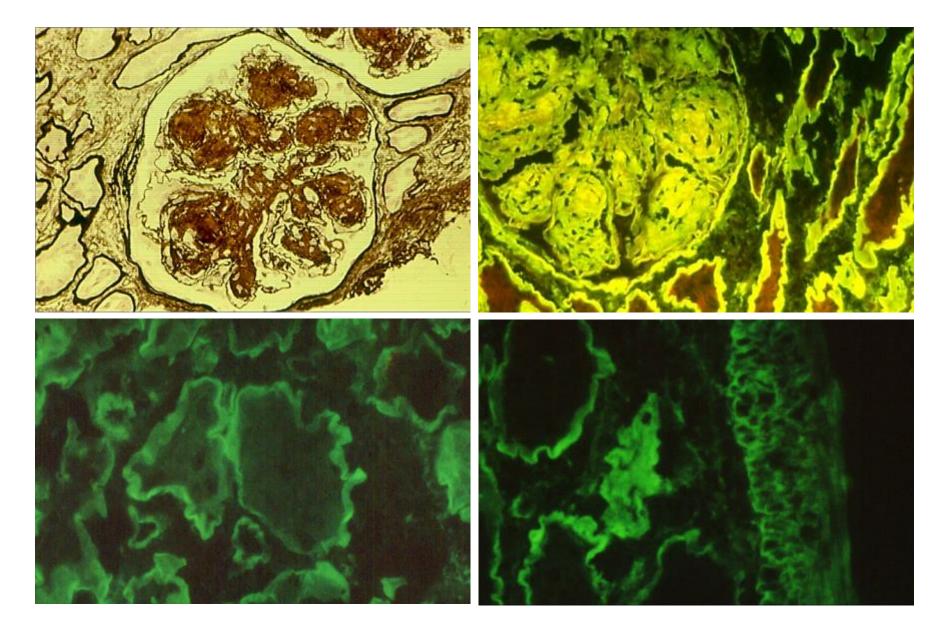
- High-dose corticosteroids
- Plasma exchanges in severe forms
- Clone targeted chemotherapy: bortezomib- or rituximab-based, HDM/ASCT

Fermand JP, et al. Blood 2013; 122: 3583-90 Harel S, et al. Br J Hematol 2015; 168(5):671-8

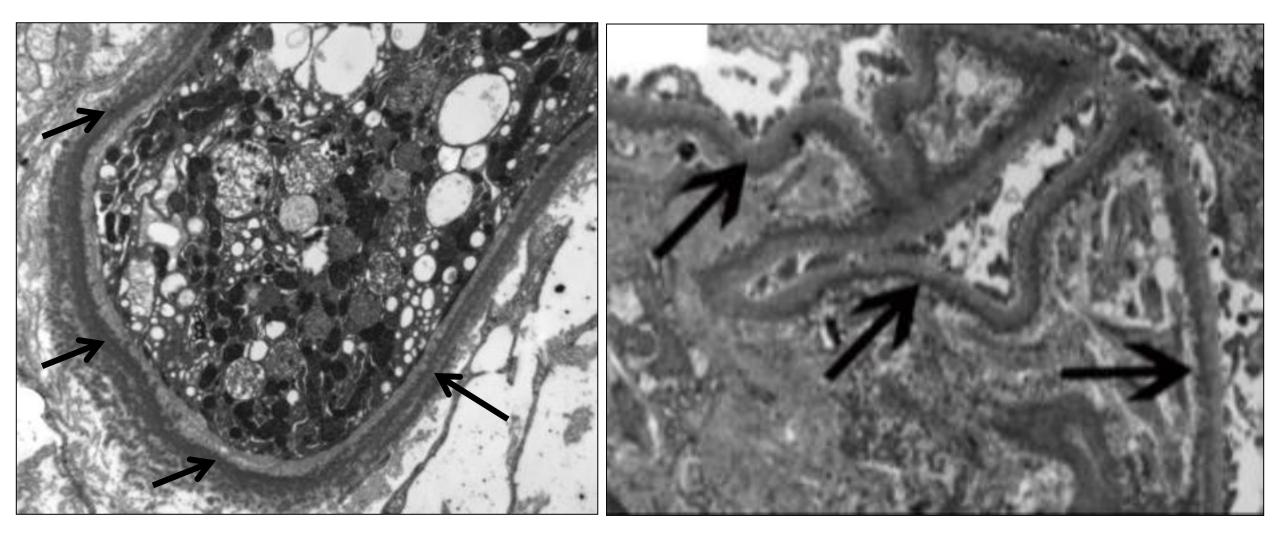
Monoclonal immunoglobulin deposition disease (Randall-type)

• 3 different subtypes:

LCDD (light chain only), HCDD (truncated heavy chain only), LHCDD (light chain + truncated heavy chain)


• Epidemiology: 0.33% of native kidney biopsies

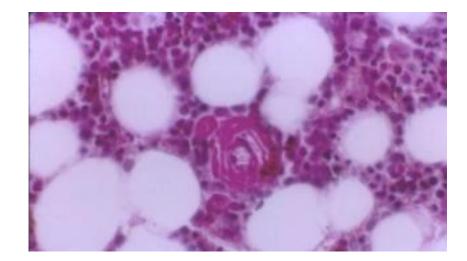
Clinical presentation:


- Median age: 64 yrs (53-75), slight male predominance
- Renal manifestations : ~ constant
 - Proteinuria (90%) (median 1.8 g/d), nephrotic syndrome: 30-60 %, hematuria: 58 %, hypertension: 55 %
 - Renal insufficiency: 85-100 % (eGFR : 24 ml/min/1.73m², CKD≥ stage 4: 45%)
 - Uncommonly (10%): slowly progressive CKD with proteinuria < 0.5g/day
 - AKI: LCDD with concomitant myeloma cast nephropathy

Nasr SH etal. Clin J Am Soc Nephrol 2012; 7: 231-9 Joly F et al. Blood 2019; 133: 576-87

Randall-type MIDD: renal pathology

Randall-type MIDD: renal pathology



Joly F et al. Blood 2019; 133: 576-87

MIDD : extra-renal manifestations

• MIDD = systemic disease

- At least 1 extra-renal involvement at diagnosis : 35%
- Mostly in LCDD
- Most common manifestations:
 - ≻Liver (17%) : hepatomegaly + cholestasis

>Heart (12%) : hypertrophic cardiomyopathy, diastolic dysfunction, raised Nt-proBNP and troponin levels

- Other localizations: peripheral nerve, bone marrow, lung, thyroid, salivary glands, gastrointestinal tract, skin, spleen, pancreas, choroid plexus, cerebral arteries
- Usually less symptomatic than in AL amyloidosis
- May affect overall prognosis (heart disease)

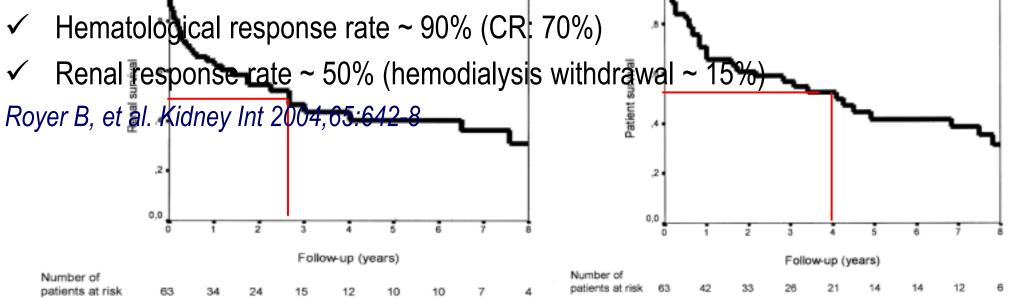
Mohan M et al. Am J Hematol 2017; 92:739-45 Joly F et al. Blood 2019; 133: 576-87

MIDD : hematological characteristics

- Bone marrow plasma cell infiltration > 5 % : 50-95 %
- MGRS (60-65%), multiple myeloma (30-40 %), Waldenström/CLL (3-4%)
- Detectable serum and/or urine monoclonal gammopathy : 80-90%
- Abnormal FLC level and ratio: ~ 100%
- LCDD: kappa LC (80%), over-representation of the Vκ4 subgroup
- HCDD: deposited and circulating truncated heavy chain (γ in most cases, uncommonly α and δ)
 CH1 deletion : 100%

Complement activation (classical pathway) in γ 1 and γ 3 HCDD : low CH50, C3, C4

Nasr SH, et al. Clin J Am Soc Nephrol 2012; 7: 231-9 Bridoux F, et al Kidney Int 2017;91:423-34 Joly F, et al. Blood 2019; 133: 576-87


MIDD : treatment and outcomes

Conventional chemotherapy before novel-anti myeloma agents (MP, VAD, VAMP)

- ✓ Median renal survival ~ 2 yrs
- ✓ Median overall survival~ 4 yrs

Lin J, et al . J Am Soc Nephrol 2001;12:1482-92 Pozzi C, et al. Am J Kidney Dis 2003;42:1154-63

High-dose melphalan with autologous stem cell transplantation

MIDD : the impact of novel agents and FLC monitoring

• Data from the French reference centre:

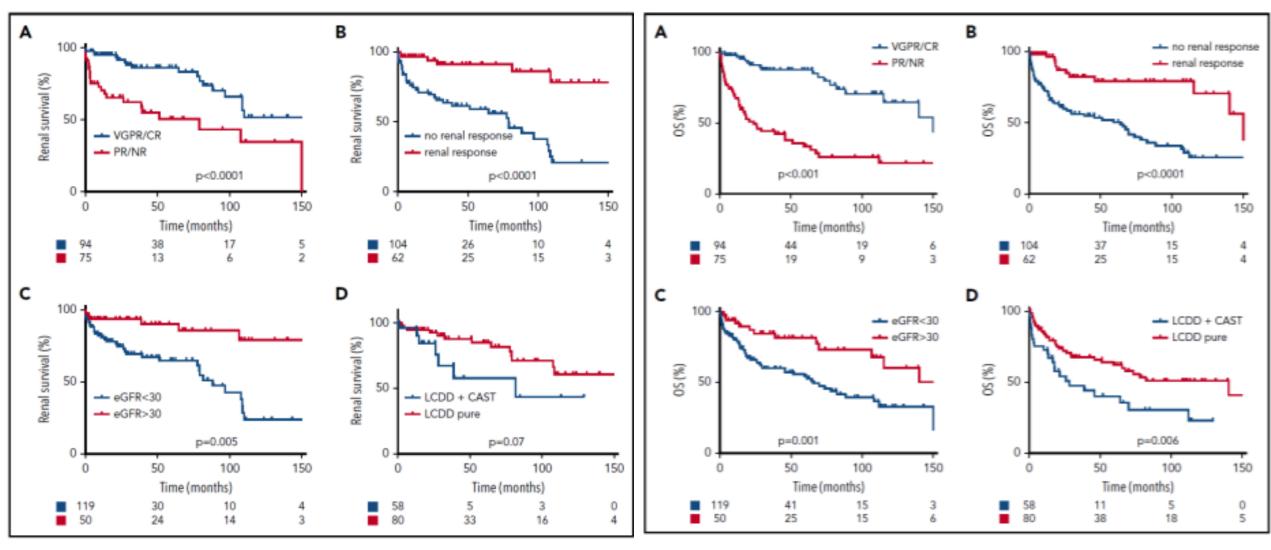
49 patients (LCDD n= 35, L/HCDD n= 14)

Baseline S.Creat. 190 µmol/L, proteinuria : 1.5 g/d, hemodialysis at diagnostic : n= 8 (17%) MGRS 62%, symptomatic MM 20%, abnormal FLCs : 100%

Bortezomib-based regimens (n=49):

BD (n=25), CyBorD (n=18), B+Imid (n=5) First line : 77%, median number of cycles : 4.5

Hematological response rate (≥ PR): 82% (≥VGPR: 65%) Renal response rate : 53% (final S. Creat 166 µmol/l, proteinuria 0.2g/d) Renal and overall survival ~ 90% (median follow-up 54 months)


Predictors of renal response :

Univariate analysis : pre-treatment eGFR >30mL/min/1.73m², post treatment dFLC <40 mg/L **Multivariate analysis: post treatment dFLC <40 mg/L**

Cohen C, et al. Kidney Int 2015; 88:1135-43

MIDD : factors associated with renal and patient survival

• The French series: 166 treated MIDD patients: LCDD (n=137), HCDD (n=18), LHCDD (n=11)

Joly F, et al. Blood 2019; 133: 576-87

Proliferative GN with monoclonal Ig deposits (PGNMID)

Proliferative GN with monoclonal Ig deposits (PGNMID)

- Biopsy incidence 0.17% to 3.7% (3rd type of MGRS in frequency)
- Age at diagnosis: ~ 55 yrs, but may affect young adults (IgG3)
- Renal presentation :
 - Renal insufficiency 65%, (median eGFR 36 mL/min/1.73 m²), <10% require dialysis
 - Proteinuria >1g/24h :100%, nephrotic syndrome: > 50%
 - Microscopic hematuria : 75%, hypertension : > 50%
 - Acute nephritic syndrome rare
 - Frequent and rapid relapse on the renal allograft

Absence of extra-renal manifestations

Nasr SH, et al. J Am Soc Nephrol 2009; 20: 2055-64 Nasr SH, et al. Kideny Int 2020; 97: 589-601

Proliferative GN with monoclonal Ig deposits (PGNMID)

Hematologic characteristics

- Detectable bone marrow clonal population : < 10%</p>
- Detectable monoclonal gammopathy (immunofixation + FLCs): **30%** (60% with immunoblot)
- Clonal detection rate: particularly low in PGNMID with IgG3 deposits
- Hypocomplementemia : 10-25%

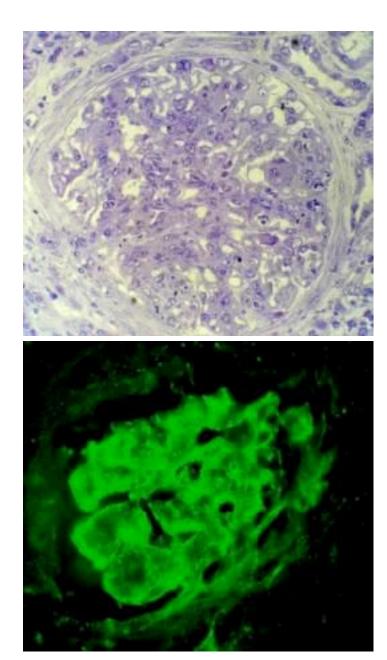
Treatment

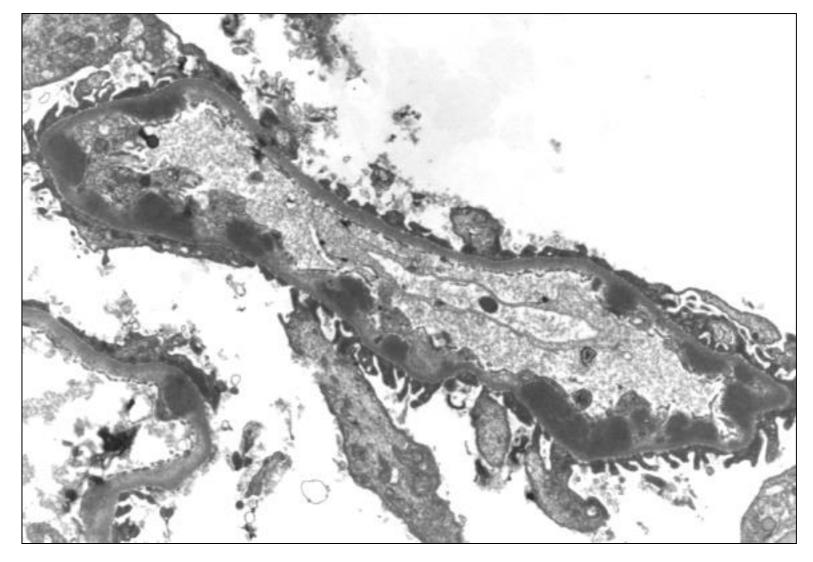
- If the clone is identified : anti-plasma cell agents (50%) or rituximab-based (50%)
- If not identified : empirical regimens (bortezomib- or rituximab-based)
- Improved renal prognosis after clone-targeted or empirical regimens vs symptomatic treatment

Nasr SH, et al. J Am Soc Nephrol 2009; 20: 2055 Gumber R, et al. Kidney Int 2018; 94:199-205 Bridoux F, et al. Nephrol Dial Transplant 2021;36:208-15

Question 2:

Regarding PGNMID, which of following proposals is false:

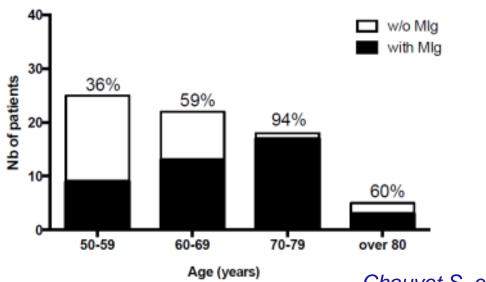

- 1. Glomerular monotypic Ig deposits are non-organized
- 2. PGNMID usually features linear Ig deposits along TBM
- 3. The rate of clonal B-cell detection is low
- 4. IgG3 is the most common involved isotype
- 5. PGNMID frequently recurrs on the renal allograft


Question 2:

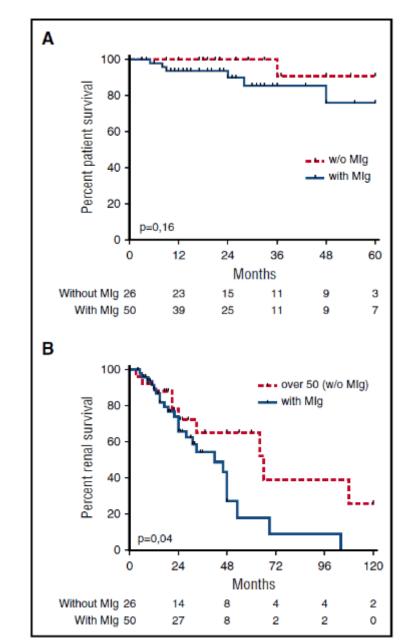
Regarding PGNMID, which of following proposals is false:

- 1. Glomerular monotypic Ig deposits are non-organized
- 2. PGNMID usually features linear Ig deposits along TBM
- 3. The rate of clonal B-cell detection is low
- 4. IgG3 is the most common involved isotype
- 5. PGNMID frequently recurrs on the renal allograft

C3 glomerulonephritis and monoclonal gammopathy



Sethi S, et al. Am J Kidney Dis 2010;56:977-82. Bridoux F, et al. Clin J Am Soc Nephrol 2011; 6: 2165-74


C3 glomerulopathy and monoclonal gammopathy

Conditions associated with C3GP vary with age :

- < **50 yrs** : C3Nef, C5Nef or anti-factor H autoantibodies Mutations in Factor H, Factor I, C3
- > 50yrs : Low prevalence of autoantibodies and mutations Monoclonal gammopathy is common Higher severity of renal disease and poor outcomes

Chauvet S, et al. Blood 2017; 129:1437-47 Ravindran A, et al. Kidney Int 2018; 94:178-86

C3G and monoclonal gammopathy : clinical presentation

At diagnosis	French series (n=50)	Mayo series (n=36)	
Age (yrs)	65 (38-82)	60 (20-85)	
Male (%)	33 (66%)	25 (69%)	
Serum creatinine (mg/dl)	1.8 (0.8-11.2)	1.9 (0.8-14.7)	
eGFR (ml/min/1.73m ²)	37 (3-100)	39.5 (3-60)	
CKD stage 4-5 (%)	27 (55%)	11 (31%)	
Nephrotic syndrome (%)	20 (43%)	Serum albumin 3.3 g/dl (2.4-4.6)	
Proteinuria (g/24h)	3.15 (0.1-1.4)	3.0 (0.2-15.0)	
Hematuria (%)	33/39 (84%)	32 (89%)	
Extra-renal symptoms* (%)	5 (10%)	NA	
Biologic markers of TMA (%)	3 (6%)	NA	

*Digital ischemia (n=2), purpura (n=1), diffuse mucinosis (n=1), capillary leak syndrome (n=1)

Chauvet S, et al. Blood 2017; 129:1437-47 Ravindran A, et al. Kidney Int 2018; 94:178-86

C3G and monoclonal gammopathy : hematologic data

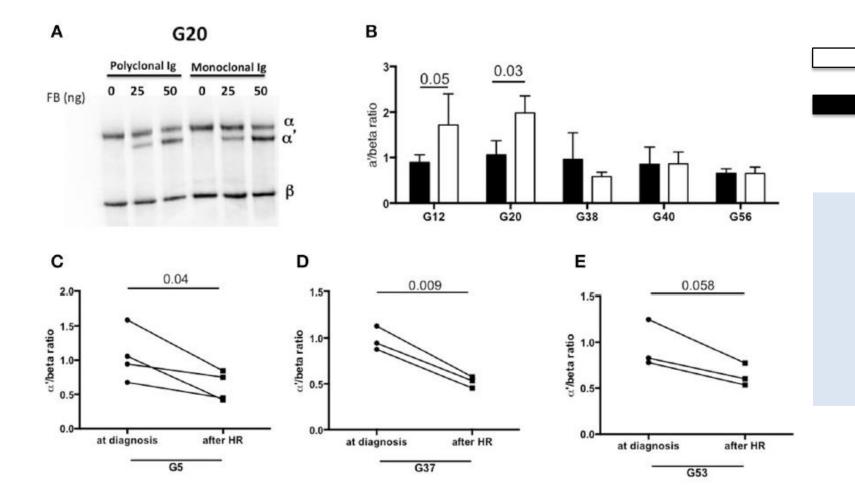
At diagnosis	French series (n=50)	Mayo series (n=36)
Serum monoclonal Ig		
IgG	47 (93%) [IgGк 71%]	31 (89%) [IgGк 64%]
IgA	2 (4%)	1 (3%)
lgM	0	3 (9%)
LC only	1 (2%)	1 (3%)
M-spike (g/l)	10.2 (2-38)	NA
Abnormal FLC (%)	20 (43%)	NA
dFLC (mg/l)	79 (2-20.800)	NA
Hematological diagnosis		
MGRS (%)	45 (90%) [SMM 30%]	28 (78%) [SMM 6%]
Symptomatic MM (%)	2 (4%)	2 (6%)
CLL (%)	3 (6%)	1 (3%)

Chauvet S, et al. Blood 2017; 129:1437-47 Ravindran A, et al. Kidney Int 2018; 94:178-86

C3 glomerulopathy and monoclonal gammopathy

- Complement abnormalities:
 - Low serum C3 ± factor B: 44% (C3 convertase activation)
 - C4, CFH, CFI, MCP = normal levels
 - High sC5b-9 level: 78% (C5 convertase activation)
 - Pathogenic variants: 7%

- Anticomplement autoantibodies: 49%


C3NeF: 7% anti-factor H: 17% anti-CR1: 27% anti-factor I: 5% Matched the serum MIg in 23% Polyclonal in 77%

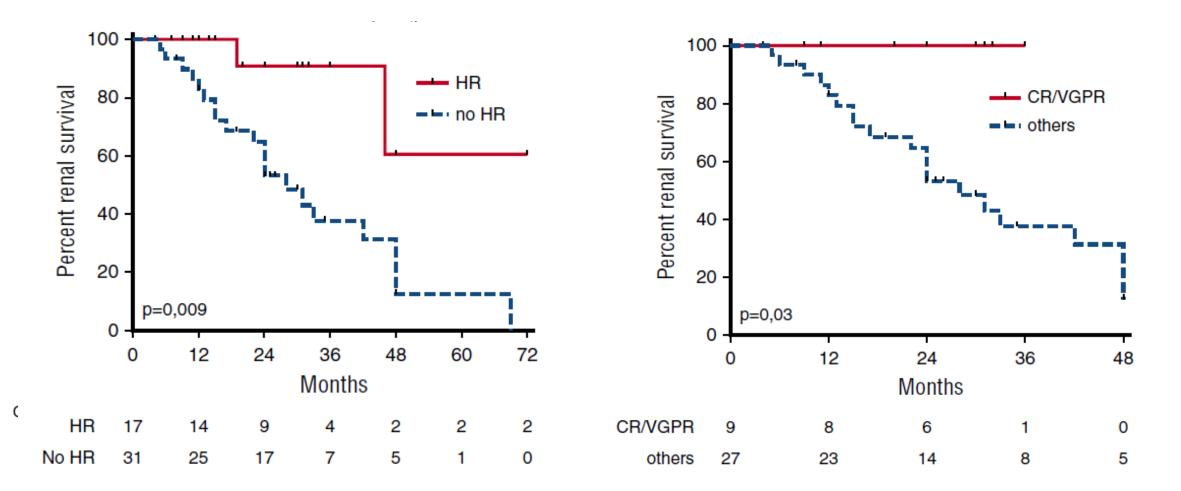
Chauvet S, et al. Front Immunol. 2018;9:2260

TABLE 1 | Comparison of immunological findings in 41 Mlg-C3G patients and 107 C3GN adults patients without Mlg.

	-		
	Mlg-C3G	Adults C3GN	<i>p</i> -value
	<i>N</i> = 41	<i>N</i> = 107	
IMMUNOLOGICAL FINDI	NGS		
C3 (mg/L)	703 (78-1220)	781 (67-1760)	0.86
Low C3 level, n(%)	18 (44%)	56 (40%)	0.71
C4 (mg/L)	250 (104-575)*	252 (94-751)*	1
sC5b-9 (ng/mL)	848 (164-2880)	478 (94-2582)	0.005
Elevated sC5b9 (upper 420ng/mL)	29/37 <mark>(</mark> 78%)	47/76 (62%)	0.09
Elevated sC5b-9 (upper twice the normal)	15/37 (41%)	13/76 (17%)	0.01
C3NeF, n(%)	3 (7%)	44/98 (45%)	0.0001
C5NeF, n(%)	0/12 (0%)	11/21(52%)	0.002
Anti-FH Abs, n(%)	9 (17%)	10/91 (11%)	0.09
Anti-Fl Abs, n(%)	2 (5%)	NA	-
Anti-CR1 Abs, n(%)	11 (27%)	3/84 (4%)	0.0001
GENETIC ANALYSIS			
Pathogenic variants	2/28(7%)	27/99 <mark>(</mark> 27%)**	0.02
* C4 level was normal in all pat	lients		

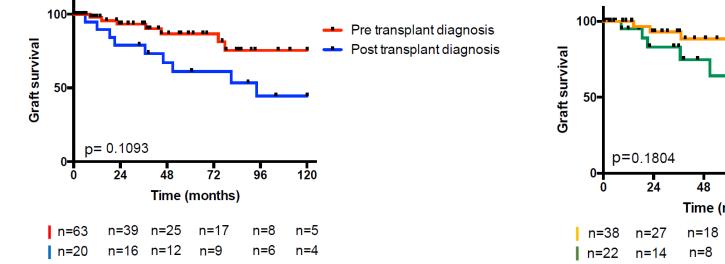
C3 glomerulopathy and monoclonal gammopathy

Purified monoclonal Ig

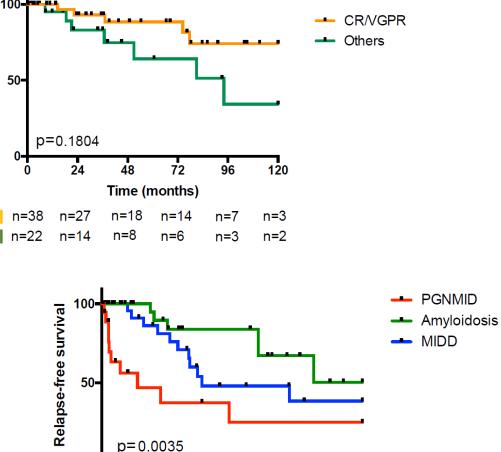

Polyclonal Igs from same patient

Most of the C3 convertase activity is borne by the MIg

Hypothesis: MIg is a «platform» for the fixation of C3b and the assembly of C3 convertase


Chauvet S, et al. Front Immunol. 2018;9:2260

C3G and MGRS : effect of clone-targeted chemotherapy


Chauvet S, et al. Blood 2017; 129:1437-47

Renal transplantation in MGRS Data from the French reference centre

- Importance of establishing the diagnosis before Tx
- Importance of pre-Tx hematological response (CR/VGPR)
- Prognosis variable among MGRS-related renal diseases
- Increased risk of post-Tx infectious and neoplastic complications vs usual renal Tx recipients

Tassery M, et al. In preparation

72

n=3

n=10

n=7

48

n=4

n=12

n=9

Time (months)

24

n=6

n=18

n=18

n=19

n=34

n=22

96

n=3

n=5

n=4

120

n=2

n=1

n=3

Question 3:

Which of the following is the main factor determining renal outcomes in MGRS ?

- 1. Quality of the hematological response
- 2. eGFR at diagnosis
- 3. Proteinuria level at diagnosis
- 4. Serum level of the monoclonal Ig
- 5. Severity of interstitial fibrosis/tubular atrophy

Question 3:

Which of the following is the main factor determining renal outcomes in MGRS?

- 1. Quality of the hematological response
- 2. eGFR at diagnosis
- 3. Proteinuria level at diagnosis
- 4. Serum level of the monoclonal Ig
- 5. Severity of interstitial fibrosis/tubular atrophy

Conclusions: management of MGRS

1. MGRS: small B-cell clone + renal disease induced by the secreted monoclonal Ig

2. Early diagnosis is mandatory

- Confrontation of clinical, immuno-hematologic and pathologic findings
- Renal pathology: LM, detailed IF studies (L C+ IgG subclasses...), EM
 ± immuno EM, proteomics
- **3. Renal and overall survival** depends on the rapid achievement of **deep hematological response** with chemotherapy adapted to the clone and to renal function
- 4. Careful and **repeated evaluation of hematological response** (FLCs, M-spike, IFPE) and tolerance

5. Multidisciplinary management is required

Acknowledgements

- Department of Hematology and Immunology, Saint Louis Hospital, Paris : Jean Paul Fermand
- Departments of Nephrology and Pathology, University Hospital Poitiers, France :

Guy Touchard, Estelle Desport, Vincent Javaugue, Elise Chickhi Jean-Michel Goujon, Sihem Kaaki, Alexia Rinsant, Cécile Ory

- Department of Hematology, University Hospital Limoges, France : Arnaud Jaccard, David Lavergne
- CNRS UMR7276, Limoges :

Christophe Sirac, Michel Cogné, Sébastien Bender

 Department of Immunology, European Hospital Georges Pompidou, INSERM 1138, Paris, France : Sophie Chauvet, Véronique Frémeaux-Bacchi

