

WELCOME TO

ESPN/ERKNet Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

Date: 19 October 2021

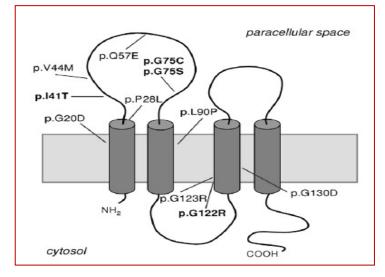
Topic: Claudin Related Disorders

Speaker: Gema Ariceta (Barcelona, Spain)

Moderator: Elena Levtchenko (Leuven, Belgium)

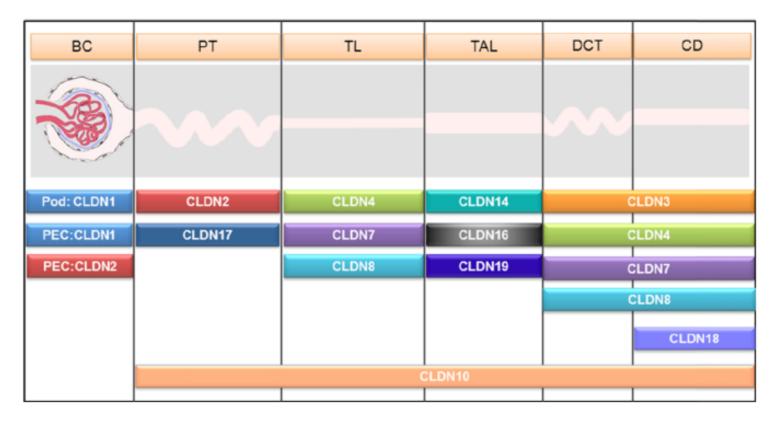
Claudin-related Disorders

Gema Ariceta Pediatric Nephrology, University Hospital Vall d' Hebron Barcelona, Spain



Disclosures

• Nothing to declare


Introduction

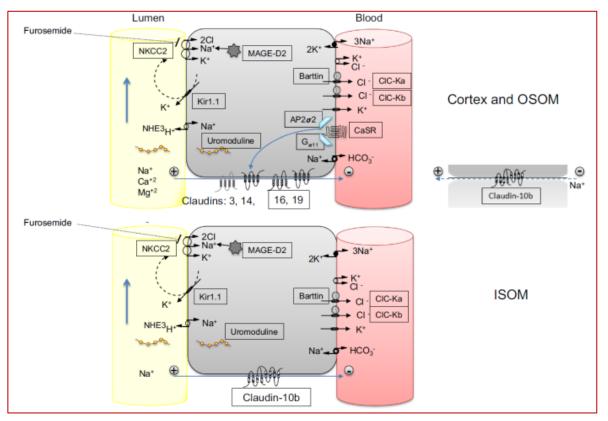
- Tubular paracellular transport is tightly regulated and can be highly specific to each nephron segment
- The permeability characteristics of the paracellular junction to various solutes are determined by claudins.
 Claudins are key integral proteins expressed at the tight junctions of epithelial and endothelial cells.
- Interactions between claudins with themselves and other claudin family members, within the same plasma membrane (cis) or with the adjacent epithelial cell (trans), create **pores** or **barriers** to ions and other small molecules.

Structure of CLDN19 and locations of different mutations observed in Spain.

Expression profile of claudin genes along the nephron of the kidney

Gong Y, Hou J. Pflugers Arch. 2017

Physiologic role of claudins in the mammalian renal tubule


Claudin	Tubule Localization	Permeability Properties ^a	Physiologic Role ^a			
2	PT, tDL ^{18,43}	Na ⁺ , K ⁺ , Ca ²⁺ , and H ₂ O ^{25,26,29,44} pore	PT Na ⁺ and fluid reabsorption ^{46,62}			
3	tAL, TALH, DCT, CD18	Nonselective barrier ¹⁰⁷	Unknown			
4	tAL, CD ¹⁸	Na ⁺ barrier and Cl ⁻ pore ^{45,87,108}	Facilitates aldosterone-sensitive distal electrogenic Na ⁺ reabsorption? ⁹⁶			
7	tDL, DCT, CD ^{85,109}	Cl ⁻ barrier ^{85,110} or Cl ⁻ pore? ⁴⁵	Renal salt reabsorption ⁸⁶			
8	tDL, DCT, CD ^{18,109}	Na ⁺ , K ⁺ , and H ⁺ barrier ^{88,89} and Cl pore ¹⁰⁸	Facilitates distal electrogenic Na ⁺ reabsorption?			
10a	PT, TALH, CCD ^{27,63}	Cl ⁻ pore ⁶³	PT Cl ⁻ reabsorption?			
10a 10b	TALH, MCD ^{27,63}	Na ²⁺ pore ⁶³	Increases Na ⁺ permeability			
14	TALH ⁸¹	Na ^{+ 81} or Na ⁺ and Ca ²⁺ barrier ⁸²	Mediates CaSR inhibition of TALH Ca ²⁺ and Mg ²⁺ reabsorption ^{81–83}			
16	tAL, TALH ^{70,111}	Na ^{+ 112} or Ca ²⁺ and Mg ²⁺ pore ^{74,75,113}	TALH reabsorption of divalent cations ^{72,76}			
17	$PT > tAL, TALH, DCT^{64}$	Cl ⁻ pore ⁶⁴	PT Cl ⁻ reabsorption?			
18	TALH, CD ⁷³	Na ⁺ and H ⁺ barrier ¹¹⁴	Unknown			
19	tAL, TALH ^{71,111}	Cl ⁻ barrier ⁷⁷	TALH reabsorption of divalent cations ⁷³			

PT, proximal tubule; tDL, thin descending limb; tAL, thin ascending limb; DCT, distal convoluted tubule; CD, collecting duct; CCD, cortical collecting duct; MCD, medullary collecting duct.

^aQuestion marks indicate speculative conclusions that have not been studied experimentally or for which multiple studies came to different conclusions.

Modified from Yu ASL. JASN 2015

TAL

Vargas Poussou R. Pediatr Nephrol 2021

Claudins and kidney disease

3 claudins (10b, 16 and 19) have been recognized as cause of rare autosomal recessive human syndroms:

Prot-Bertoye C, Houillier P. Genes 2021

Claudin 10b & Helix syndrome

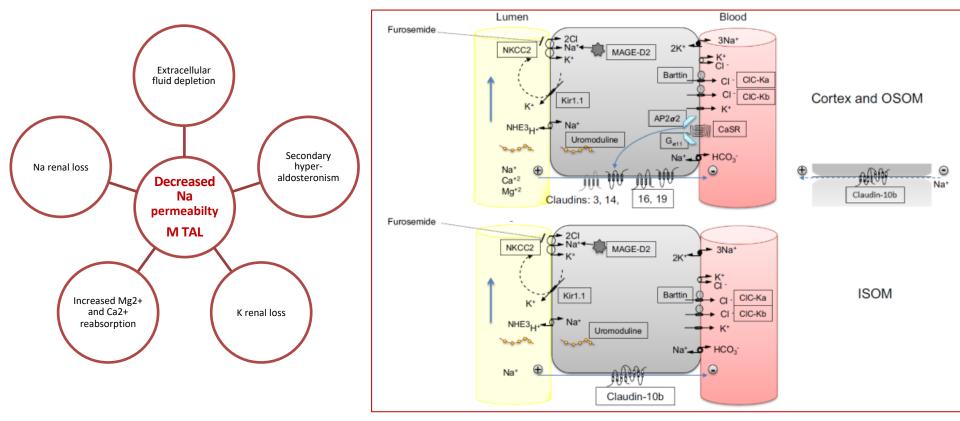
The human *CLDN10* gene is located on chromosome 13q32 and contains five exons. There are two claudin 10 splice variants that encode two main claudin 10 isoforms: claudin 10a and claudin 10b

The specific effect of claudin 10b is to increase the paracellular permeability to Na⁺.

Helix syndrome (OMIM # 617671) is a rare AR salt-losing tubulopathy, described in 2017, caused by *CLDN10b* loss-of-function mutations, that lead to lower paracellular Na⁺ permeability in the TAL, sweat glands and salivary glands

HELIX syndrome phenotype

Hypohidrosis	100%				
Electrolyte imbalance	94%				
Hypolacrimia	100%				
Ichthyosis	86%				
Xerostomia	100%				
Hypokalemia	38%				
Hypermagnesemia	88%				
eGFR <60	25%				
Nephrolithiasis	18%				
Hyperaldosteronism					
without hyperreninism	some patients				


Modified from Prot-Bertoye C, Houillier P. Genes 2021 Vargas-Poussou R. Pediatr Nephrol 2021

HELIX syndrome

H Hypohidrosis
E Electrolyte imbalance
L hypoLacrimia
I Ichthyosis
X Xerostomia

Modified from Prot-Bertoye C, Houillier P. Genes 2021

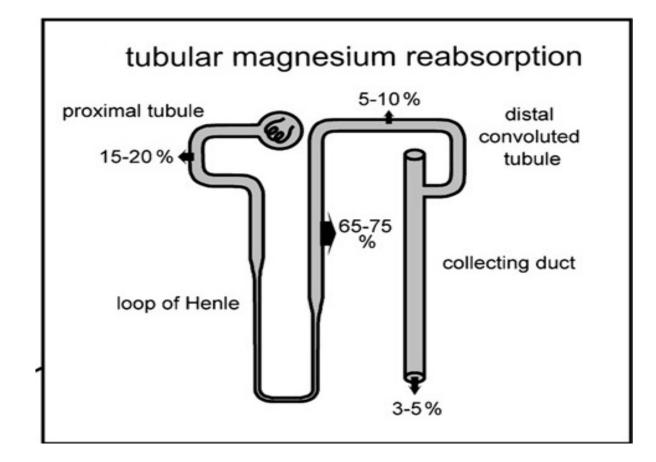
HELIX syndrome pathogenesis at the TAL

Prot-Bertoye C, Houillier P. Genes 2021

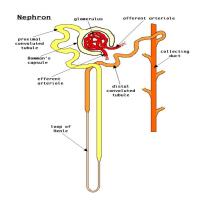
Vargas Poussou R. Pediatr Nephrol 2021

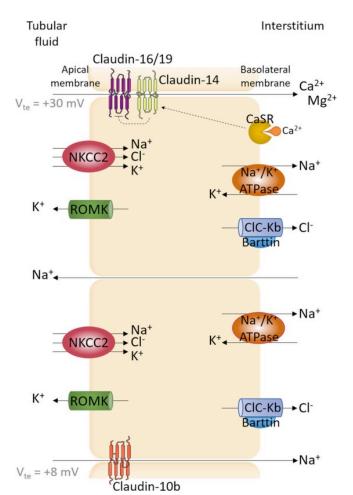
QUESTION

What of the following manifestations is not characteristic of Helix syndrome?

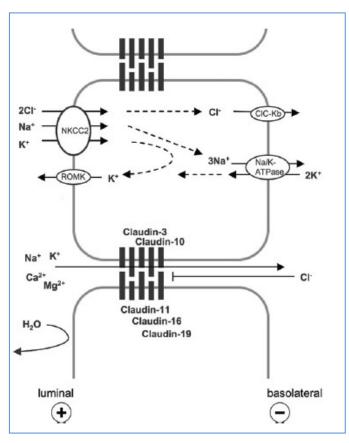

- 1. Hypohidrosis
- 2. Hypolacrimia
- 3. Hyperkalemia
- 4. Hypermagnesemia
- 5. All above

ANSWER


What of the following manifestations is not characteristic of Helix syndrome?


- 1. Hypohidrosis
- 2. Hypolacrimia
- 3. Hyperkalemia
- 4. Hypermagnesemia
- 5. All above

Patients present with hypokalemia due secondary hyperaldosteronism caused by salt wasting and extracelular fluid depletion


Ca2+ and Mg2+ reabsorption at the TAL

Vall-Palomar M et al. Pediatr Nephrol, 2021

Claudin-16 / Claudin- 19 complex

Claudin-16 increases paracellular permeability to Na⁺ while Claudin-19 decreases paracellular permeability to Cl⁻, leading to a lumen-positive voltage to drive Ca2+ and Mg2+ reabsorption

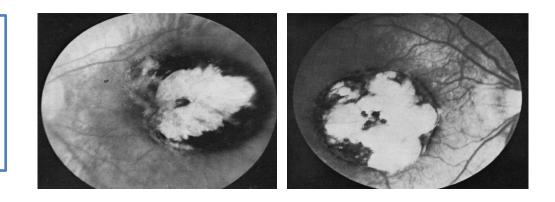
Hou J et al. J Clin Invest, 2008; Haisch L et al. JASN, 2011.

Familial Hypomagnesemia with hypercalciuria & nephrocalcinosis (FHHNC)

It is a rare autosomal recessive , with an incidence of <1/1.000,000, described by Michelis-Castrillo et al in 1972. It is characterized by severe urinary Mg wasting, associated with hypercalciuria and progression to CKD

- Polyuria, polydipsia
- UTI
- Hyperuricemia
- Hypomagnesemia
- Severe hypermagnesiuria
- Severe hypercalciuria
- Bilateral nephrocalcinosis
- Kidney stones
- Low citrate in urine
- Incomplete DRTA
- Hyperparathyroidism
- CKD

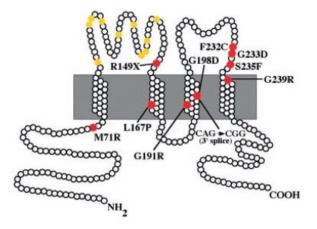
- High fractional urinary excretion of Mg is found while Mg serum level is inappropriately low.
- Hypomagnesemia may be overlooked in patients with advanced CKD.


nephrocalcinosis

Familial Hypomagnesemia with hypercalciuria & nephrocalcinosis (FHHNC)

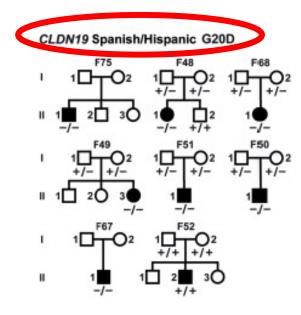
± Ocular phenotype

Reduced visual ability
Macular Colobomata
Retinopathy
Nystagmus
Severe Myopia



Maier et al. (1979) Helv Paediatr Acta 34

Paracellin-1, a Renal Tight Junction Protein Required for Paracellular Mg²⁺ Resorption


David B. Simon,^{1,2*} Yin Lu,^{1,2*} Keith A. Choate,^{1,2} Heino Velazquez,² Essam Al-Sabban,³ Manuel Praga,⁴ Giorgio Casari,⁵ Alberto Bettinelli,⁶ Giacomo Colussi,⁷ Juan Rodriguez-Soriano,⁸ David McCredie,⁹ David Milford,¹⁰ Sami Sanjad,¹¹ Richard P. Lifton^{1,2}⁺

www.sciencemag.org SCIENCE VOL 285 2 JULY 1999

Mutations in the Tight-Junction Gene Claudin 19 (*CLDN19*) Are Associated with Renal Magnesium Wasting, Renal Failure, and Severe Ocular Involvement

Martin Konrad, André Schaller, Dominik Seelow, Amit V. Pandey, Siegfried Waldegger, Annegret Lesslauer, Helga Vitzthum, Yoshiro Suzuki, John M. Luk, Christian Becker, Karl P. Schlingmann, Marcel Schmid, Juan Rodriguez-Soriano, Gema Ariceta, Francisco Cano, Ricardo Enriquez, Harald Jüppner, Sevcan A. Bakkaloglu, Matthias A. Hediger, Sabina Gallati, Stephan C. F. Neuhauss, Peter Nürnberg, and Stefanie Weber *Am. J. Hum. Genet.* 2006;79:949–957.

CLDN19 Spanish mutation p.G20D (c.59G>A)

	gene	chromosome	protein
FHHNC 1	CLDN16	3q27-29	Paracellin-1 (Claudin-16)
FHHNC 2	CLDN19	1p34.2	Claudin-19

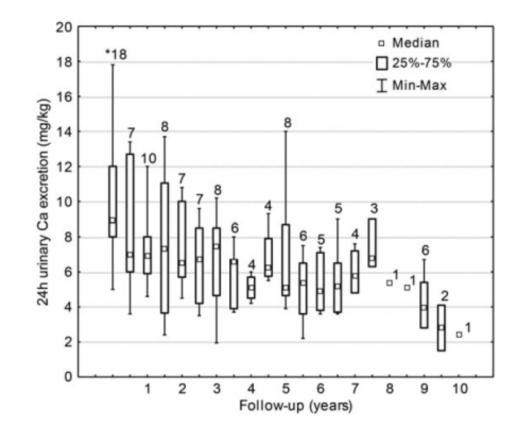
Simon DB et al. Science, 1999; 285: 103-6 Konrad M et al. Am J Hum Genet, 2006; 79:949-957

FHHNC: clinical manifestations

Clinical symptoms	Laboratory findings	Radiological findings	Extrarenal			
Chinical symptoms		Raulological infulligs	manifestations			
Polyuria/Polydipsia	Hypomagnesemia	Medullary	Horizontal nystagmus			
Feeding difficulties	Hypercalciuria	nephrocalcinosis	Myopia magna**			
Vomits	Hypermagnesiuria	Nephrolithiasis	Macular colobomata**			
Failure to thrive	Hyperuricemia	Renal cysts	Macular degeneration**			
Abdominal pain	Elevated serum	Bilateral slipped capital femoral epiphysis	Pigmentary retinitis**			
Enuresis	creatinine		Macular scar**			
UTI	Hyperparathyroidism		Strabismus**			
Rickets	Metabolic acidosis		Astigmatism**			
Cramps	Sterile leukocyturia		Amelogenesis			
Tremors	Hypocitraturia		imperfecta Chondrocalcinosis			
Gait instability						
Seizures						

** in patients with CLDN19 mutations

Vall-Palomar M et al. Pediatr Nephrol, 2021

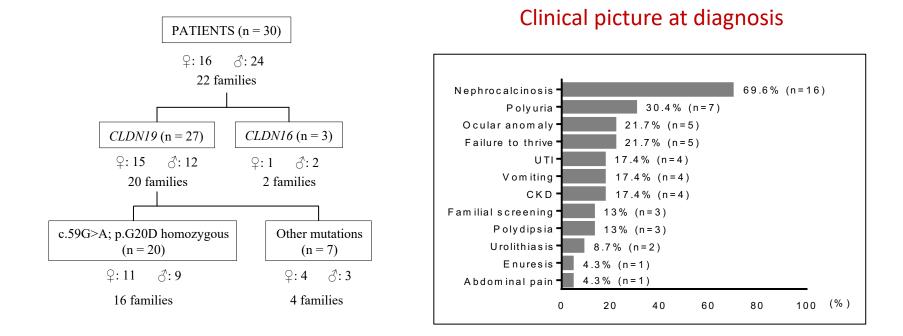

Urinary and plasmatic values of Ca y Mg in FHHNC

Parameter	Described in patients with FHHNC	Normal values
Serum Mg	$0.6 \pm 0.3 \text{ mmol/L}$ $1.1 \pm 0.2 \text{ mg/dL}$	0.70–1.1 mmol/L 1.8–2.3 mg/dL
Urinary Mg	FEMg 6-26% UMg/Cr 0.8–1.2 mmol/mmol UMg/Cr 0.17–0.26 mg/mg	FEMg < 4% UMg/Cr 0.89–1.07 mmol/mmol UMg/Cr 0.19–0.23 mg/mg
Urinary Ca	VCa 0.25 ± 0.15 mmol/kg/day VCa 10 ± 6 mg/kg/day UCa/Cr 0.5–2.5 mmol/mmol UCa/Cr 0.18–0.88 mg/mg	VCa < 0.1 mmol/kg/day VCa < 4 mg/kg/day UCa/Cr < 1.4 mmol/mmol UCa/Cr < 0.5 mg/mg

FEMg fractional excretion of Mg, UMg/Cr urinary Mg/creatine, VCa urinary Ca excretion in 24 h, UCa/Cr urinary Ca/creatinine

Vall-Palomar M et al. Pediatr Nephrol, 2021

Calciuria in 24 patients with FHHNC (French series)


Godron et al. cJASN, 2012; 7: 81-909

Extrarrenal manifestions in FHHNC

FHHNC: our contemporary experience in Spain (30 patients)

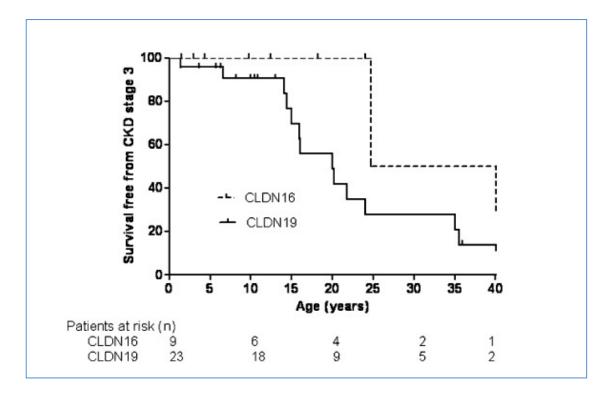
FHHNC: ocular phenotype in CLDN19 patients

- 60% myopia magna, macular coloboma ± nystagmus
- 20% mild myopia or astigmatism
- 20% without ocular involvement
- Remarkably, no correlation between ocular impairment and progression to kidney failure was observed.

QUESTION

What of the following manifestations is not required for the diagnosis of FHHNC?

- 1. Hypercalciuria
- 2. Macular coloboma
- 3. Increased FEMg
- 4. Nephrocalcinosis
- 5. All are required


ANSWER

What of the following manifestations is not required for the diagnosis of FHHNC?

- 1. Hypercalciuria
- 2. Macular coloboma
- 3. Increased FEMg
- 4. Nephrocalcinosis
- 5. All are required

Macular coloboma is limited to some patients with *CLDN19* mutations. Patients with *CLDN16* mutations do not exhibit severe ocular anomalies

Outcome and genotype in 24 patients with FHHNC (French series)

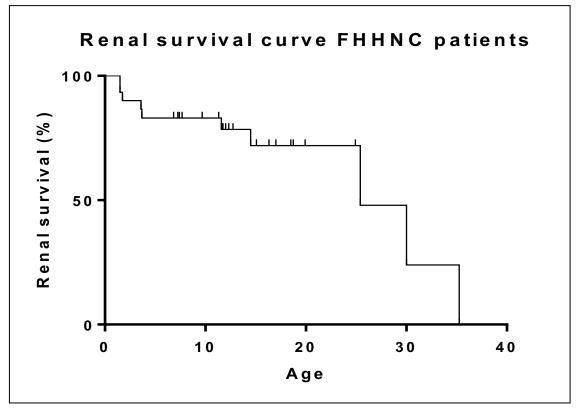
Godron et al. cJASN, 2012; 7: 81-909

Outcome and genotype in FHHNC (Spanish contemporary series, n = 30)

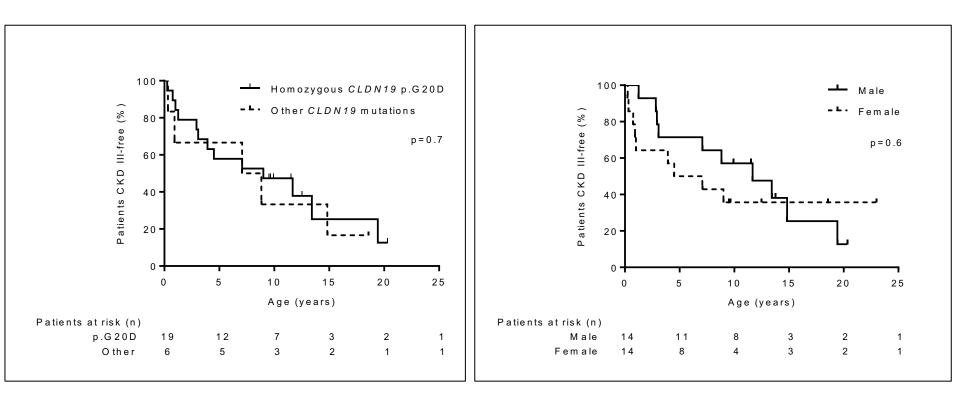
Age at diagnosis 3.7±4.7 y.

At 4 y. 5/30 (17%) ESKD

Overall, 10/30 (33%) ESKD (9 KT)


Renal survival md 25.4 years

63% CKD 4-18 y. 30% CKD >18y.


More severe phenotype in females:

(80% females in the subgroup with ESKD vs. 40% females in the subgroup not requiring renal replacing therapy)

73% with ocular involvement

FHHNC outcome in Spain: CKD 3 free survival (30 patients)

Factors associated with faster CKD progression in FHHNC patients

CLDN19 ? (vs CLDN16) gene mutations

Female gender

Higher PTH levels

Higher urinary excretion of Mg and Ca

Others?

Konrad et al. JASN, 2008 Godron et al. cJASN, 2012; 7: 81-909

Variability of disease severity occurs in FHHNC siblings with CLDN19 mutations

	Família 1		Família 2		Família 3		Família 4		Família 5		Família 6		Família 7	
Pacient	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14
Sexe	н	D	D	н	н	н	D	D	D	D	D	D	н	Н
Edat diagnòsticª	9,2	0,3	3,6	1,6	8,6	5,2	5,1	1,9	0,9	0,3	< 1	2	3,9	0,8
Motius diagnòstic	PU AO	CF	CF	PU	-	AO CKD	-	PU PD NC CD	ITU	CKD NC	NC	-	PU PD ITU NC	-
eGFR diagnòstic	60	46	85,5	90	67	55	78	63	56	64	N/D	N/D	0,9 ^b	0,5 ^b
Edat actual ^a	18,5	9,1	18,5	17	15,1	11,7	9,7	7,3	12,9	9,3	45,9	36,3	11,3	10,4
eGFR actual	47	N/A	61,5	27	87	54	79	41	N/A	N/A	N/A	N/A	22,4	N/A
Edat FR ^a	N/A	1,5	N/A	N/A	N/A	N/A	N/A	N/A	1,5	1,8	29,9	25,4	N/A	3,6
Anomalies ocular	MM CM	M AS	М	NM	мм	MM	-	-	-	-	MM CM N	M AS	CM A	М

H: Home; D: Dona; M: Miopia; AS: Astigmatisme; MM: Miopia magna; CM: Coloboma macular; N: Nistagme; CKD: *Chronic Kidney Disease*, CF: Cribratge familiar; CD: Creixement deficient; NC: Nefrocalcinosi; PU: poliúria; PD: Polidípsia; AO: Anomalies oculars; ITU: Infecció del tracte urinari; eGFR: *Estimated glomerular filtration rate;* FR: Fallida renal

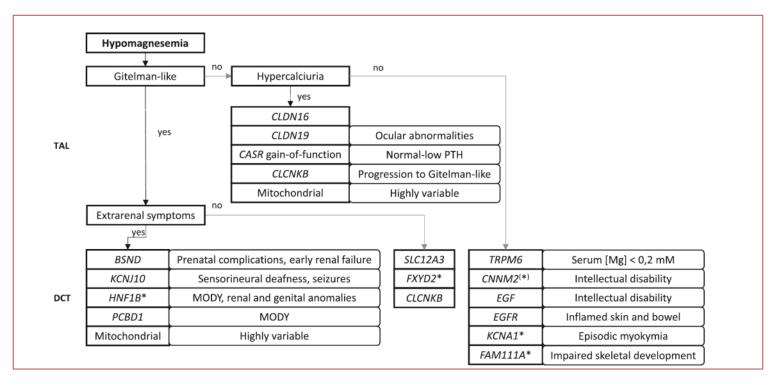
N/A: No aplica; N/D: No determinat.

^aEdat expressada en anys, ^bCreatinina sèrica expressada en mg/dL.

Treatment of FHHNC: supportive

Oral Mg supplements:

Aim: to avoid symptoms of hypomagnesemia, but Mg2+ persists low


Thiazides: to reduce hypercalciuria

Citrate (caution with serum K⁺)

Avoid acquired renal damage (dehydration, drugs,...)

Kidney transplant (carriers can be donors)

Diagnostic flowchart for a suspected genetic cause of hypomagnesemia

Viering DHHH et al. Pediatr Nephrol, 2017; 32: 1123-1135

Next Webinars

ESPN/ERKNet Virtual Workshop on Fundamentals in pediatric Dialysis

Date: 20/21 Oct 2021

Speaker: Various Speakers, organized by the ERKNet Paediatric CKD & Dialysis Working Group and the ESPN Dialysis Working Group

Topic: Fundamentals in pediatric dialysis

ESPN/ERKNet Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

Date: 26 Oct 2021

Speaker: Paola Romagnani

Topic: Stem cells in the kidney

ERA/ERKNet Advanced Webinars on Rare Kidney Disorders

Date: 02 Nov 2021

Speaker: Karl Peter Schlingmann

Topic: Genetic cause of nephrolithiasis and nephrocalcinosis

Subscribe the ERKNet and IPNA Newsletter and don't miss Webinars!