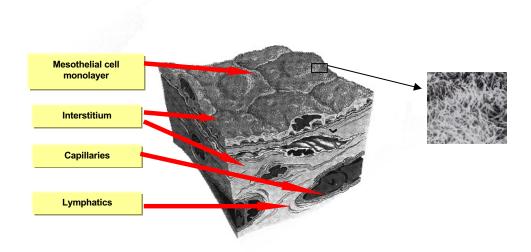
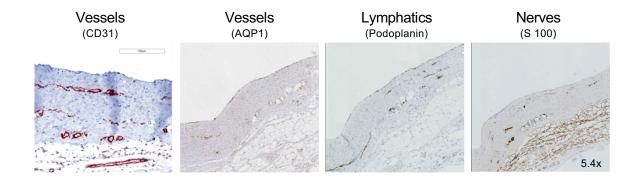
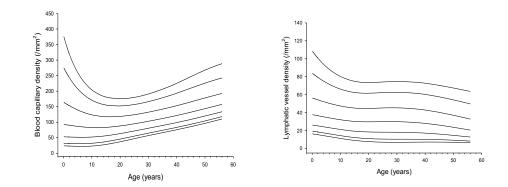

Principles of chronic PD peritoneal dialysis, dialysates, catheters, machines Claus Schmitt, Heidelberg

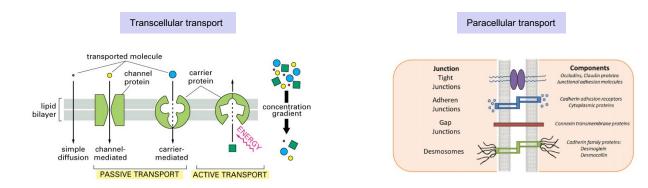

PD: Rather simple technique but the devil is in the details

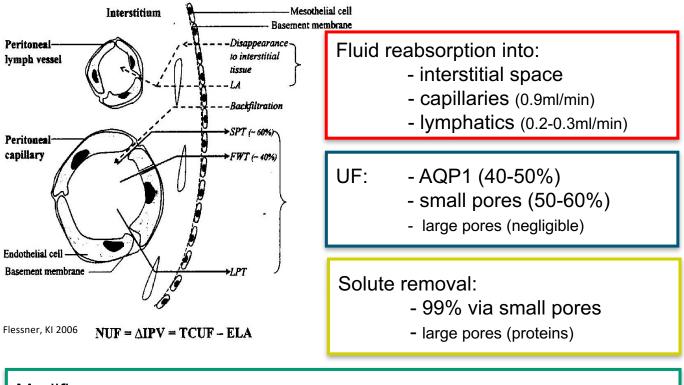

Peritoneal dialysis vs. healthy kidneys:


- 10-15% removal of small solutes/toxins
- less removal of middle molecules
- no removal of protein bound toxins
- some protein loss (incl. protein bound toxins)
- no tubular reabsorption function

The semipermeable peritoneal membrane – a biological dialyzer

PD membrane histomorphology





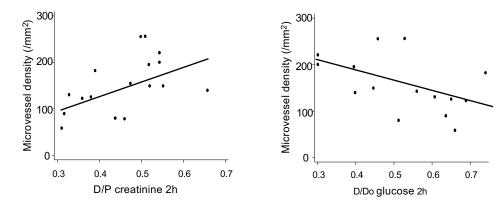
Healthy peritoneum

The three pore model

- <u>Ultrasmall pores (AQP 1)</u>: selective water transfer mainly during early dwell period and with high glucose ("Na⁺ sieving") 40-50% of UF
- <u>Small pores:</u> water and solute transfer by diffusion and UF associated convection 50-60% of total UF
- <u>Large pores:</u> larger molecule transfer, protein leakage

Modifiers:

- \Rightarrow Individual (genetically defined / PD related) membrane characteristics
- \Rightarrow Intraperitoneal pressure
- \Rightarrow Peritoneal area in contact with dialysate (dwell volume)


Fluid transport

- Driven by the glucose concentration (crystalloid pressure) and
- the osmotic conductance of glucose (reduced with peritoneal fibrosis)
- Early phase of a dwell water mainly free water (via AQP-1):
 => transient decline in dialysate solute concentration (sodium sieving, 6-11 mmol/l at min 60)
- Later dwell small pore function predominates, dialysate solute concentrations increase again
- => Increase in serum sodium with short, high glucose dwells (increased thirst)

Solute transport

- Small solute transport:
 - by concentration gradient driven diffusion
 - by convection, i.e. the solutes dragged together with the ultrafiltration
 - => High NaCl loss with UF in infants! Calcium loss but need of positive Ca balance with growth!
- Proteins and other macromolecules: Via large pores, driven by hydrostatic forces

Peritoneal vessel density predicts transport function

MVLR Analysis 2 hours D/P cr

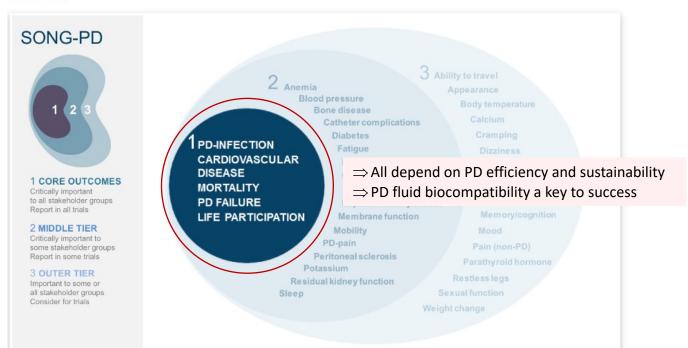
	Coeff.	lower CI95%	upper CI95%	p-value
Age (years)	0.007	-0.002	0.015	0.115
Dialytic glucose exposure (g/m²/day)	0.002	-0.000	0.003	0.059
Microvessel density (/mm²)	0.166	0.069	0.264	0.004
Submesothelial thickness				
(µm)	-0.000	-0.001	0.000	0.111

MVLR Analysis 2 hours D/D₀ glucose

	Coeff.	lower CI95%	upper CI95%	p-value	
Age (years)	-0.011	-0.027	0.005	0.142	
Dialytic glucose exposure	-0.002	-0.005	0.001	0.147	
(g/m²/day)	0.002	01000	0.001	0.111	
Microvessel density (/mm²)	-0.203	-0.404	-0.003	0.047	
Submesothelial thickness	0.001	-0.000	0.001	0.089	
_(µm)	0.001	-0.000	0.001	0.009	

PD Fluids

High GDP PD Fluid


Low GDP PD Fluid

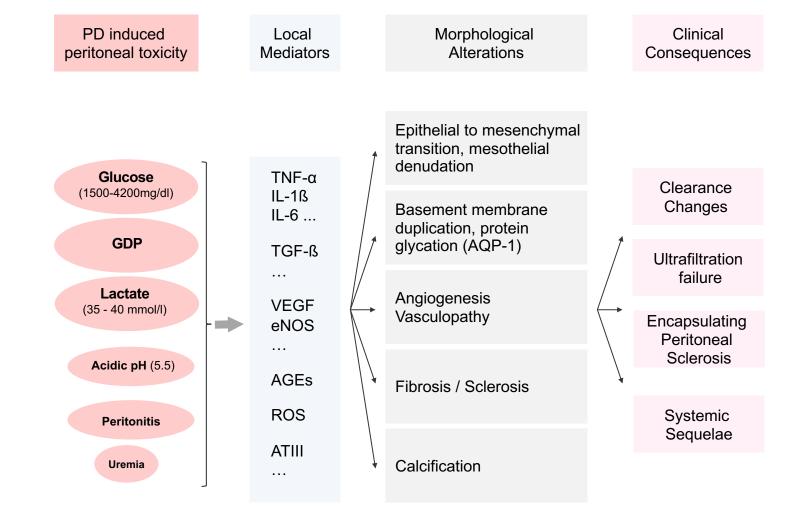
GDP = Glucose degradation products (toxic)

SONG-PD

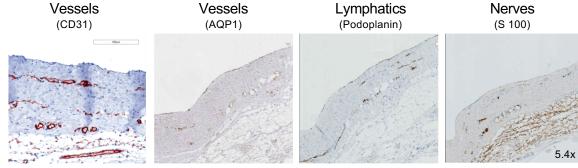
Stakeholders: - Patients/caregivers

- Health care professionals

"Conventional", single chamber, PD fluids


	CAPD 2/3/4	Dianeal	Gambrosol 10/40	
	17/18/19	PD 1, PD2#, PD4		
Sodium (mmol/l)	134	132	132	
Chloride (mmol/l)	102.5	102/96/95	96/95	
Calcium (mmol/I)	1.25/1.75	1.75/1.75/1.25	1.75/1.35	
Magnesium (mmol/l)	0.5	0.75/0.75/0.25	0.25	
Glucose (%)	1,5/2.3/4.25	1.36/2.27/3.86	1.5/2.5/4.0	
Osmolarity (mosmol/l)	356-509	344-486	353-492	
Lactate (mmol/I)	35	35/40/40	40	
рН	5.5	5.5	5.5	
Formaldehyde (µmol/l) *	5.4 ± 0.4	6.8 ± 0.2	6.4±0.5	
3-DG (µmol/l) *	142±0.8	167±0.3	175±4	
3,4-DGE (µmol/l) *	16.2 ± 0.8	11.3 ± 0.5	13.1±1.1	

* at medium glucose concentration; 3-DG = 3-deoxyglucosone; 3,4-DGE = 3,4-dideoxyglucosone-3-ene).

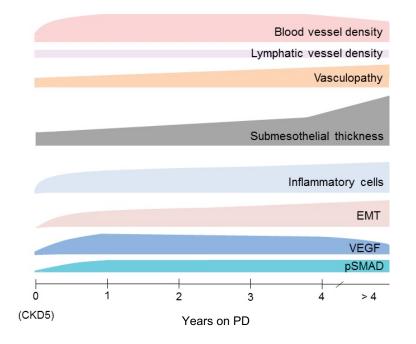

"Biocompatible", PD fluids

	BicaVera	Balance	Gambrosol trio	Physioneal 35/40	Extraneal (7.5%	Nutrineal
			10/40		Icodextrin)	(1.1%AS)
Sodium (mmol/l)	132	134	132 *	132	132	132
Chloride (mmol/l)	104.5	100.5	96 *	101/95	96	105
Calcium (mmol/l)	1.75	1.25/1.75	1.75 /1.35 *	1.75 /1.25	1.75	1.25
Magnesium (mmol/l)	0.5	0.5	0.25 *	0.25	0.25	0.25
Glucose (%)	1,5/2.3/	1,5/2.3/	1.5/2.5/	1.36/2.27/	0	0
	4.25	4.25	3.9	3.86		
Osmolarity (mosmol/l)	358-511	358-511	356-483	344-484	284	365
Lactate (mmol/l)	0	35	40 *	10/15	40	40
Bicarbonate (mmol/l)	34	0	0	25/25	0	0
рН	7.4	7.0	5.5 -6.5 #	7.4	5.5	6.7
Formaldehyde (µmol/l) *	< 3.3	< 3.3	< 3.3	3.4 ± 0	3.6 ± 0.7	n.d.
3-DG * (µmol/l)	16.3±0.2	17.6±0.3	20.2±2.4	93.3 ± 5.0	7.5±0.4	<0.1
3,4 DGE * (μmol/l)	< 2.4	< 2.4	< 2.4	14.3 ± 2.5	<2.4	n.d.

* at medium glucose concentration; 3-DG = 3-deoxyglucosone; 3,4-DGE = 3,4-dideoxyglucosone-3-ene; n.d. not done

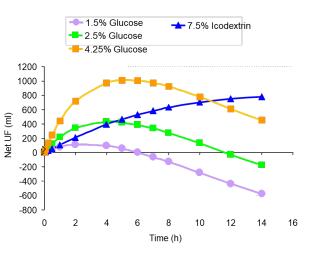
Transformation of the PD membrane with low GDP PD

Schaefer B et al. Sci Rep. 2016


PD 2 years (BicaVera®)

9.1 years of PD (Physioneal®)

Healthy peritoneum

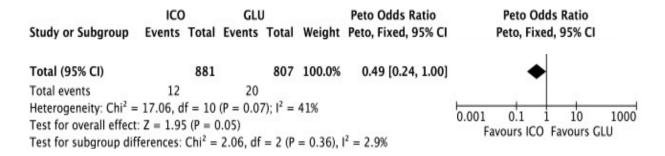

Peritoneal Transformation with Low GDP Fluids

Driving force: dialysate glucose (1500-4200 mg/dl) => Use lowest glucose concentration possible => low sodium diet (except for infants)

Icodextrin PDF

- Slowly resorbed polymers derived from starch (MWD85%: 1.7-45 kD) 40-50% after 12 hours
- More rapid icodextrin absorption in infants/young children
- Iso-osmotic colloid osmosis: Slow but sustained ultrafiltration (AQP 1 independent, no sodium sieving)
- UF less dependent of peritoneal transporter status
- Low GDP content

American Journal of Kidney Diseases Volume 75, Issue 6, June 2020, Pages 830-846


Original Investigation

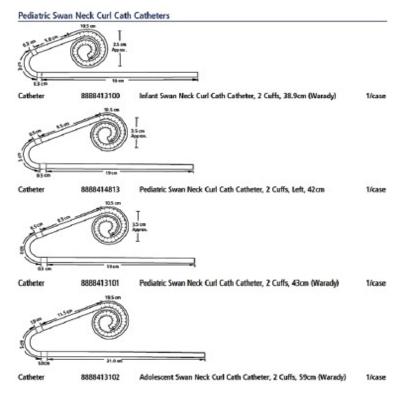
Icodextrin Versus Glucose Solutions for the Once-Daily Long Dwell in Peritoneal Dialysis: An Enriched Systematic Review and Meta-analysis of Randomized Controlled Trials Käthe Goossen¹, Monika Becker¹, Mark R. Marshall ^{2,3,4},^A,^B, Stefanie Bühn¹, Jessica Breuing¹, Catherine A. Firanek⁵, Simone Hess¹, Hisanori Nariai ⁶, James A. Sloand⁵, Qiang Yao⁷, Tae Ik Chang⁴, JinBor Chen⁹, Ramón

Firanek ^a, Simone Hess ^a, Hisanori Nariai ^a, James A. Sloand ^a, Qiang Yao ^a, Tae Ik Chang ^a, J Paniagua ¹⁰, Yuji Takatori ¹¹, Jun Wada ¹², Dawid Pieper ¹

19 RCTs, 1693 participants

- Ultrafiltration improved with icodextrin (208.92 [95% CI, 99.69-318.14] mL/24 h; high certainty of evidence)
- Fewer episodes of fluid overload (RR, 0.43 [95% CI, 0.24-0.78]; high certainty)
- <u>Icodextrin probably decreased mortality risk</u> compared to glucose-only PD (OR, 0.49 [95% CI, 0.24-1.00]; moderate certainty).

Osmotic Agent: Amino acids

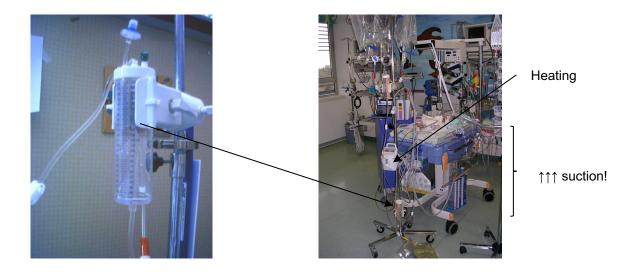

- No glucose, no GDP
- Similar solute and water transport
- Phosphate free AA supply
- 4% increase in protein synthesis rate in adult CAPD patients with AA PDF, when combined with glucose (Tjiong et al, JASN 2005, Tjiong et al, CJASN 2007)
- Nutritional effect appears small, especially compared to GI tube feeding

Costs

Biocompatibility?

=> Indication in pediatric dialysis uncertain

Catheters

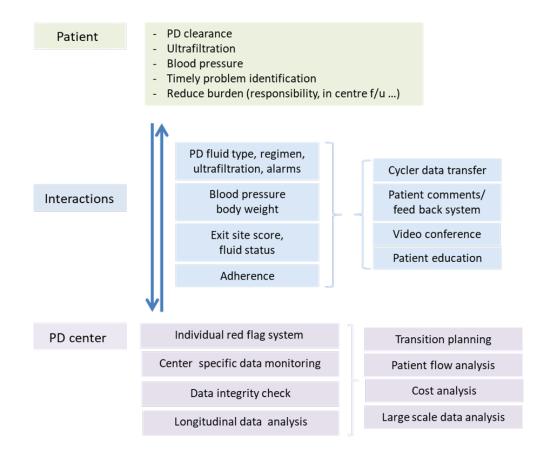


Catheter choice and placement

- <u>Catheter length</u> and <u>curl size</u> adapted to body length (31 to 62.5 cm).
- Two <u>cuffs</u> (one cuff in preterms); cuff positions estimated form the distance between umbilicus and symphysis pubis
- Downward or lateral subcutaneous <u>tunnel/exit site</u> (less infections)
- In infants, exit site above the diaper area and distant from gastrostomies
- <u>Insertion</u> can be performed laparoscopically, with the curled portion positioned deep in the pelvis
- Administer a first-generation cephalosporin (cefazolin) just prior to surgery. Glycopeptide in *Staphylococcus aureus* carriers
- Omentectomy is critical to prevent obstruction
- Check catheter <u>function</u> and the absence of dialysate leaks in the OR (10 20 cc/kg BW)

Machines -Chronic PD in Newborns and Young Infants

- Use cyclers with about (80-) 100 ml dwell volume onwards
- Slow inflow and outflow rates / pressures


Cyclers

Remote Patient Monitoring

QUIZZ

Which of the PD related statements are rights?

- a. Next to diffusion across the peritoneal membrane (osmosis), convection contributes to purification.
- b. Low GDP fluids hardly transform the peritoneal membrane
- c. Icodextrin fluids improve salt and water removal during the long dwell
- d. Omentectomy is required in selected patients only
- e. UF associated electrolyte losses can be estimated from the effluent concentrations