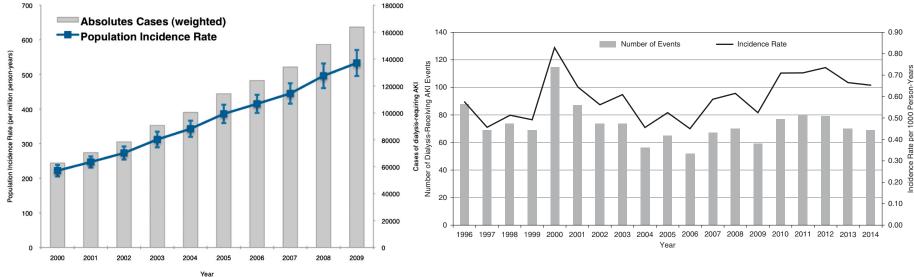
ERKNet/ESPN Workshop fundamentals of pediatric dialysis October 21-22, 2021

#### **Dialysis in AKI**

Isabella Guzzo Department of Pediatric Subspecialties – Dialysis Unit Bambino Gesù Children's Hospital – Rome – Italy




### **Dialysis in AKI**

- When to start dialysis
- Which modality of dialysis
- How to prescribe dialysis in AKI



#### Trend in incidence in dialysis receiving AKI



- From 2000 to 2009, the incidence of dialysisrequiring AKI increased of 10% per year
- The increase in incidence was evident in all age groups examined and in children the increase was 7% per year

There was a significant change in the incidence of dialysis-receiving AKI among children from 1996 (0.58 per 1000 person-years) to 2015 (0.65 per **1000 person-years**) (Cochran–Armitage test for trend, P=0.01)



Bate

|                                             |                     |                                               |                                                         |                                     |                                                                                                       |                                                                  | 10000                                                                                                                    | 00000                                                             | 10000    | 5555556                                                                         |
|---------------------------------------------|---------------------|-----------------------------------------------|---------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------|---------------------------------------------------------------------------------|
| Author                                      | Year of publication | Type of<br>study                              | N of<br>patients                                        | Country                             | Age                                                                                                   | Male sex                                                         | Primary disease                                                                                                          | Dialysis<br>modality                                              | Setting  | Outcome<br>Survival                                                             |
| Bunchman TE <sup>10</sup>                   | 2001                | Retrospective                                 | 226                                                     | USA                                 | Newborn-216 mo<br>Mean 74±11.7<br>mo                                                                  |                                                                  | Congenital heart<br>disease 21%<br>ATN 20%<br>Sepsis 17%<br>BMT 11%<br>Liver Tx 10%<br>TLS 7%<br>HUS 7%<br>Cardiac Tx 6% | CKRT 47%<br>HD 27%<br>PD 26%                                      | PICU     | Overall 54%<br>CKRT 40%<br>PD 49%<br>HD 81%                                     |
| Symons JM <sup>24</sup><br>ppCRRT Registry  | 2007                | Multicenter<br>Prospective<br>Observational   | 344                                                     | USA                                 | Newborn-25 yrs                                                                                        | 58%                                                              | Sepsis 23%<br>BMT 16%<br>Cardiac disease<br>12%<br>Renal disease 9%                                                      | CKRT                                                              | PICU     | 58%                                                                             |
| Fleming GM <sup>32</sup><br>ppCRRT Registry | 2012                | Multicenter<br>Prospective<br>Observational   | 50                                                      | USA                                 | Median 5.5 yrs<br>(IQR 0.25-14 yrs)                                                                   | Not indicated                                                    | IEM 42%<br>Drug toxicity 36%<br>TLS 22%                                                                                  | CKRT<br>HD prior to CKRT<br>9                                     | PICU     | 78%                                                                             |
| Kaddourah A⁴<br>AWARE                       | 2017                | Multicenter<br>Prospective<br>Observational   | 4984<br>AKI 1261<br>AKI stage 2-3<br>543<br>KRT 73 (2%) | Asia<br>Australia<br>Europe<br>USA  | Median 66 mo<br>(IQR 18.8-151.1)                                                                      | 55%                                                              | Respiratory 38%<br>Surgical or trauma<br>30%<br>Shock 24%                                                                | Not indicated                                                     | PICU     | Overall 97%<br>AKI 93%<br>AKI stage 2-3 89%<br>KRT 67%                          |
| Jetton JG <sup>43</sup><br>AWAKEN           | 2017                | Multicenter<br>Retrospective<br>Observational | 2022<br>AKI 605<br>AKI stage 2-3<br>324<br>KRT 25       | Australia<br>Canada<br>India<br>USA | Gestational age:<br>22 0/7->36 weeks                                                                  | Overall 56%<br>AKI 57%                                           | Reasons for NICU<br>admission:<br>Prematurity 52%<br>Sepsis 50%<br>Respiratory failure<br>46%                            | PD 9 pts<br>CKRT 4 pts<br>CKRT + ECMO 11<br>pts<br>PD + CKRT 1 pt | NICU     | Overall 96%<br>No AKI 99%<br>AKI 90%<br>AKI stage 2-3 90%<br>KRT 76%            |
| Chanchlani R <sup>9</sup>                   | 2019                | Retrospective<br>Population-<br>based cohort  | 1394 dialysis-<br>receiving AKI                         | Canada                              | 29 days-18 yrs<br>Median<br>1996-2001 13 yrs<br>2002-2005 3 yrs<br>2006-2009 5 yrs<br>2010-2015 3 yrs | 1996-2001 50%<br>2002-2005 51%<br>2006-2009 53%<br>2010-2015 57% | Not indicated                                                                                                            | HD 25%<br>PD 47%<br>CKRT 28%                                      | Hospital | Overall 81%<br>1996-2001 86%<br>2002-2005 76%<br>2006-2009 75%<br>2010-2015 81% |

...........

#### Indications to KRT

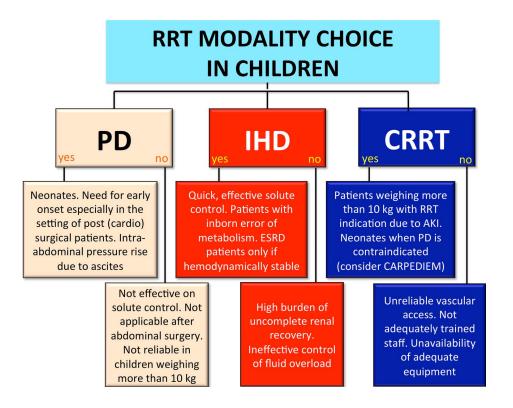
- Hyperkaliemia
  - serum potassium >6 mL
  - serum potassium >5.5 mEq,
- Acidosis
  - pH<7.15 in a cont.</p>
  - pH<7.15 in a context opossibility of increasing </li>
- Oligo-anuria
- Acute pulmonary edema due to fluir severe hypoxemia
- Severe symptomatic uremia
- Drug toxicities
- Hyperammonemia/inborn errors of metabol

#### **KDIGO Guidelines**

- Initiate KRT emergently when lifethreatening changes in fluid, electrolyte, and acid-base balance exist
- Consider the broader clinical context, the presence of conditions that can be modified with KRT, and trends of laboratory tests

out

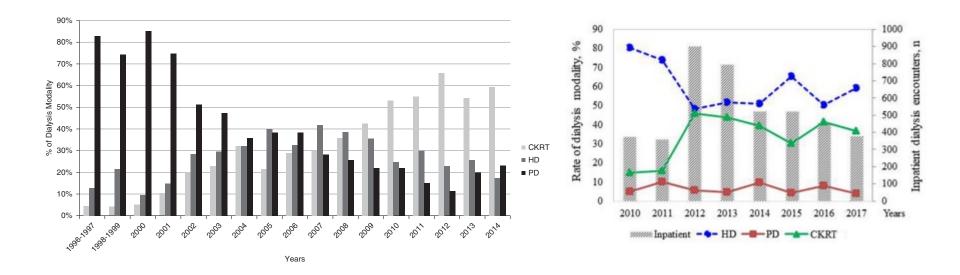
leading to




### For those patients with AKI but without indications for urgent dialysis should KRT be initiated early or should it be delayed?

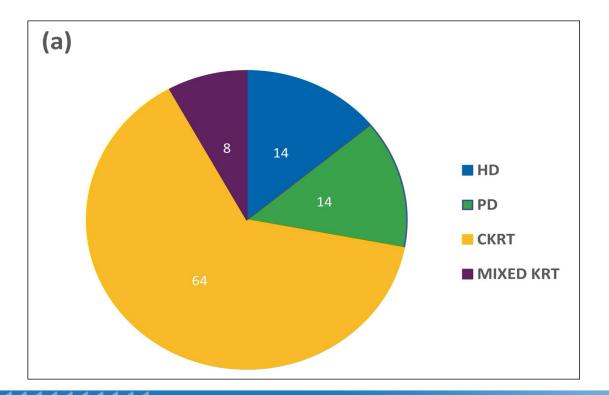


| Study      | Design<br>(year)              | Sample<br>size | Early<br>KRT                       | Delayed<br>KRT                                                        | Type of patients                    | Type of<br>KRT      | Dose of RRT                                 | Outcome                                                                                     |
|------------|-------------------------------|----------------|------------------------------------|-----------------------------------------------------------------------|-------------------------------------|---------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|
| ELAIN      | Single center<br>RCT (2016)   | 231            | Within 8<br>hours of<br>KDIGO 2    | Within 12<br>hours of<br>KDIGO 3 <i>or</i><br>Specific<br>indication  | Medical ICU 6 %<br>Surgical ICU 94% | CKRT                | 30 mL/Kg/h                                  | 90 Day Mortality:<br>Early 39.3%<br>Delayed 54.7%<br>(p=0.03)                               |
| ΑΚΙΚΙ      | Multicenter<br>RCT (2016)     | 620            | Within 6<br>hours of<br>KDIGO 3    | Specific<br>indicaion                                                 | Medical ICU 80%<br>Surgical ICU 20% | IHD/CKRT            | Not<br>standardized                         | 60 Day Mortality:<br>Early 48.5%<br>Delayed 49.7%<br>(p=0.79)                               |
| IDEAL-ICU  | Multicenter<br>RCT (2018)     | 488            | Within 12<br>hours of<br>RIFLE-F   | After 48<br>hours                                                     | Septic shock                        | IHD/CKRT            | IHD 300-500<br>ml/min<br>CRRT 25<br>mL/kg/h | 90 Day Mortality<br>Early 58%<br>Delayed 54%<br>(p=0.38)                                    |
| STARRT-AKI | Multicenter<br>RCT (2020)     | 2927           | Within 12<br>hours of<br>KDIGO 2-3 | After 72<br>hours of<br>KDIGO 2-3 <i>or</i><br>Specific<br>indication | Medical ICU 67%<br>Surgical ICU 33% | IHD/CKRT<br>/SLED   | CRRT 23-33<br>mL/kg/h                       | 90 DAY Mortality:<br>Accelerated 43.9%<br>Standard 43.7%<br>(p=0-92)                        |
| AKIKI 2    | Multicenter 278<br>RCT (2021) | -              | More-<br>delayed RRT               | Mixed<br>medical/surgical<br>ICU                                      | IHD/CKRT                            | Not<br>standardized | RRT-free days<br>Delayed 12 days            |                                                                                             |
|            |                               |                | for more<br>than 72 h<br>or BUN>   | Mandatory<br>indication <i>or</i><br>BUN >140 m<br>g/dl               | Septic shock 46%                    |                     |                                             | More-delayed 10<br>days<br>60 Day Mortality<br>Delayed 44%<br>More-delayed 55%<br>(p=0.071) |


#### **AKI and KRT modality choice**



#### **Consider:**

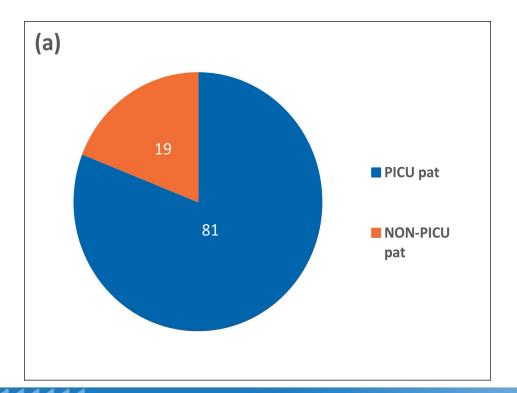

- Age/patient size
- Primary disease
- Comorbidities
- Hemodynamic stability
- Local expertise
- Availability of dedicated devices

#### **Dialysis modality**





#### **AKI – Dialysis modality**



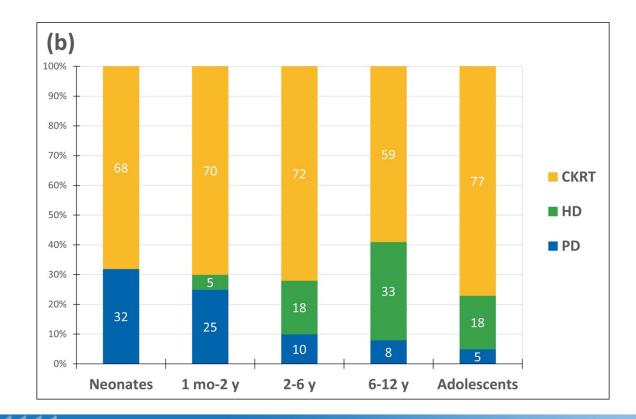

EurAKId Registry Guzz

Guzzo I. NDT 2021; doi: 10.1093/ndt/gfab280



#### **AKI – Dialysis setting**

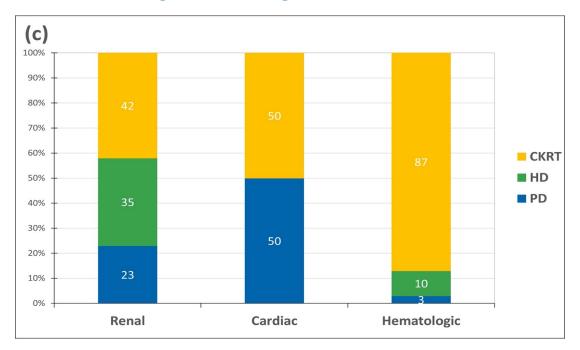



EurAKId Registry

Guzzo I. NDT 2021; doi: 10.1093/ndt/gfab280



### **AKI - dialysis modality according to age**



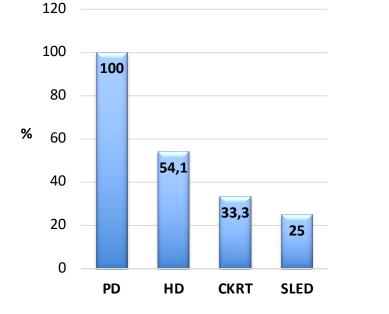



EurAKId Registry

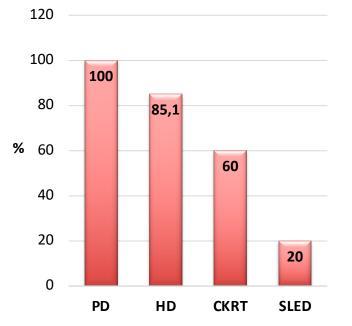


# AKI - dialysis modality according to primary disease




**EurAKId Registry** 

Guzzo I. NDT 2021; doi: 10.1093/ndt/gfab280




### **Availability of KRT in AKI**

#### **Developing Countries**



#### **Developed Countries**





# **Peritoneal dialysis in AKI**

#### **Advantages**

- Less pro-inflammatory and more physiological than EC treatments
- Safe in case of hemodynamic instability
- No need for vascular access
- No need for anticoagulation
- No need for PICU environment
- Glucose containing PD solutions are a source of glucose/calories
- Easy, no particular technical skill required
- Inexpensive



### **Peritoneal dialysis in AKI**

#### **Disadvantages**

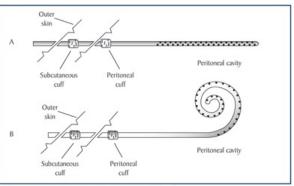
- Unpredictable UF
- Less effective in solutes removal than HD or CKRT
- Possible development of hyperglycemia
- Intact peritoneal cavity required
- Consider the possible worsening of respiratory failure
- High nursing workload



# **PD favourite modality**

- In low birth-weight babies to avoid difficulties with the vascular access
- Post cardiac surgery in small babies
- Presence of bleeding diatheses which contraindicate the placement of large central venous catheters
- Cardiovascular instability in small babies where specialized paediatric CKRT equipment is not readily available to allow for low extracorporeal blood volumes




### **PD catheters**

- Surgically placed catheters
  - Laparoscopic or open technique
- Catheters placed by Seldinger technique
  - With a guidewire and a peel-away sheath, under local anesthesia at the bedside
- Interventional radiological placement
  - Combining ultrasound and fluoroscopy
- Rigid stylet insertion PD catheters
  - Not advised to be used beyond 2-3 days



### **PD catheters**

| Tenckhoff catheter size 15 Fr approx. guide | Age                 |  |  |
|---------------------------------------------|---------------------|--|--|
| 31–32 cm                                    | <6 months           |  |  |
| 37–38 cm                                    | 6 months to 5 years |  |  |
| 40–42 cm                                    | Older than 5 years  |  |  |





#### Cook Multipurpose Drainage catheter

| Catheter size | Age                 | Pigtail catheters less likely to obstruct |
|---------------|---------------------|-------------------------------------------|
| 5 Fr          | Premature infant    | Obstructs easily as small drainage holes  |
| 6 Fr          | Neonate             | Obstructs easily as small drainage holes  |
| 8.5 Fr        | I month to I year   | Most frequently used, even in neonates    |
| 10.2 Fr       | 6 months to 2 years | , , ,                                     |
| 12 Fr         | l year to 5 years   |                                           |









# **PD** Prescription

- Low fill volume 10-20 ml/kg (300-600 ml/m<sup>2</sup>), gradually increased to 30-40 ml/kg (800-1100 ml/m<sup>2</sup>)
- Dwell times 30-60 min (shorter in neonates and infants)
- Total cycle 60-90 min. Fill 5-10 min, dwell 30-60 min, drain 10-20 min
- Start with PD solution with dextrose concentration of 2.5%, increase it if more efficient ultrafiltration is required
- Add heparin to PD solution 500IU/I
- Check daily for electrolytes and add sodium and potassium to PD fluid if required
- Perform leukocyte count daily for peritonitis surveillance



### **Itermittent hemodialysis**

#### **Advantages**

- Rapid rate of solute removal
- Rapid rate of ultrafiltration
- In selected cases may be performed without anticoagulation
- No need for PICU environment
- Allows down-times for diagnostic and therapeutic procedures

## **Itermittent hemodialysis**

#### **Disadvantages**

- Hemodynamic stability required
- Need for a well-functioning vascular access
- Need for anticoagulation
- Fluid restriction required, limiting the amount of daily nutrition
- Need for experienced and trained nurses



#### **Vascular access**

| Patient size | Catheter size                           | Site of insertion                  |
|--------------|-----------------------------------------|------------------------------------|
| Neonate      | Double-lumen 7F                         | Femoral artery or vein             |
| 3–6 kg       | Double- or triple-lumen 7F              | Jugular, subclavian,<br>or femoral |
| 6–30 kg      | Double-lumen 8F                         | Jugular, subclavian,<br>or femoral |
| >15 kg       | Double-lumen 9F                         | Jugular, subclavian,<br>or femoral |
| >30 kg       | Double-lumen 10F or<br>triple-lumen 12F | Jugular, subclavian,<br>or femoral |

# **IHD prescription**

- The dialyzer surface area should be between 75 and 100% of the patient's total body surface area
- Consider bloodline priming when the EC circuit volume exceeds 10% of the child's blood volume
- Blood flow 5-8 ml/Kg/min
- Dialysate flow 300-500 ml/min
- Length of the session tailored in order to obtain urea reduction rate of 30% for the first session (up to 70% in the following days)
- Weight loss should not exceed 5% of the patient's body weight
- Heparin initial bolus 20-30 UI/kg followed by continuous infusion of 10-20 UI/kg/h



#### **CKRT in AKI**

#### **Advantages**

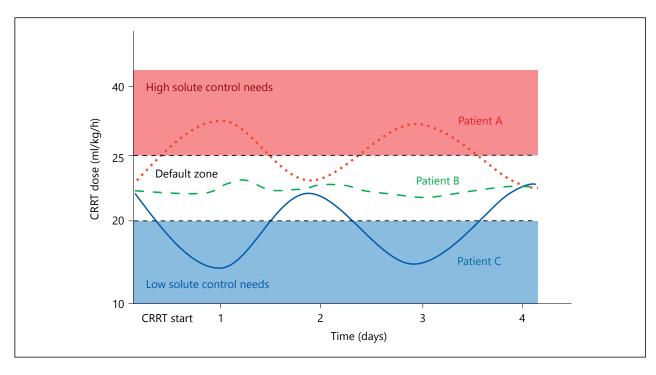
- Safe in case of hemodynamic instability
- Allows the correction of electrolytes imbalance and acidosis
- Efficient in solute removal
- Allows for gradual fluid removal
- Treatment can be individualized to the specific clinical condition



#### **CKRT in AKI**

#### **Disadvantages**

- PICU environment required
- Need for well-functioning vascular access
- Need for anticoagulation
- Experienced and trained nurses are required
- Technically challenging in neonates and small infants
- Costs




### **CKRT Prescription**

- Consider bloodline priming when the EC circuit volume exceeds 10% of the child's blood volume
- Blood flow 3-10 ml/Kg/min in neonates, 5 ml/kg/min in infants and 100-150 ml/min in older children and adolescents
- Dialysate and/or replacement flow to deliver the recommended dose of 2 l/h/1.73 m<sup>2</sup>
- Add ultrafiltration when the patient is stable, 1-2 ml/kg/h
- Prefer citrate anticoagulation



#### **Prescription dynamic and individualized**





#### **CKRT in infants**



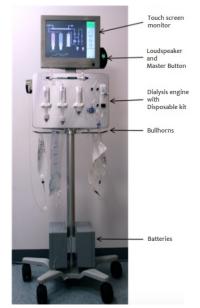


PRISMAFLEX - BAXTER





#### **CKRT in neonates and infants**


#### CARPEDIEM

CArdio Renal PEDIatric Emergency Machine



#### NIDUS

Newcastle Infant Dialysis and Ultrafiltration System

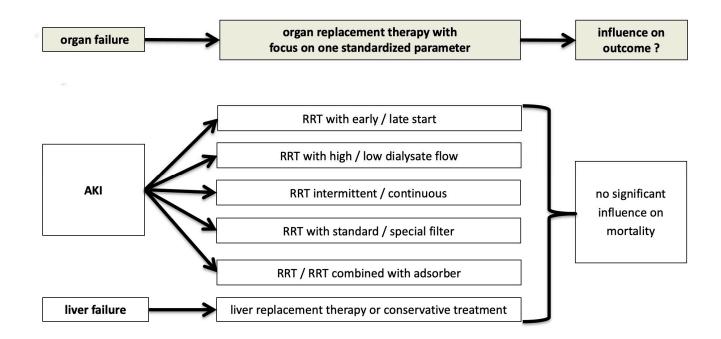


#### AQUADEX



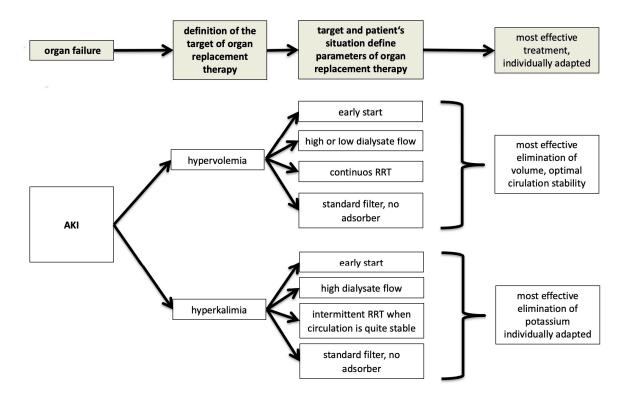


#### Hemofilters


| Hemofilter              | Priming<br>volume (ml)                                    | Surface<br>area (m <sup>2</sup> ) | Membrane             | Manufacturer | System        |
|-------------------------|-----------------------------------------------------------|-----------------------------------|----------------------|--------------|---------------|
| Prismaflex<br>HF20      | 60                                                        | 0.2                               | Polyarylethersulfone | Baxter       | Prismaflex    |
| Prismaflex<br>ST60 set  | 93                                                        | 0.6                               | AN69 ST              | Baxter       | Prismaflex    |
| Prismaflex<br>ST100 set | 152                                                       | 1                                 | AN69 ST              | Baxter       | Prismaflex    |
| Ultraflux<br>AVpaed     | 18 + Iuer-Iock<br>dialysate and<br>filtrate ports + lines | 0.2                               | Polysulfone          | Fresenius    | Multifiltrate |
| Ultraflux<br>AV400S     | 52 + lines                                                | 0.75                              | Polysulfone          | Fresenius    | Multifiltrate |
| HCD 0075                | 27                                                        | 0.075                             | Polysulfone          | Medtronic    | CARPEDIEM     |
| HCD 015                 | 33                                                        | 0.15                              | Polyethersulfone     | Medtronic    | CARPEDIEM     |
| HCD 025                 | 41                                                        | 0.25                              | Polyethersulfone     | Medtronic    | CARPEDIEM     |



# Treatment option in AKI patients can only result in a benefit if the right patient is chosen for an appropriate indication and appropriate treatment




#### **AKI and KRT: classic approach**





#### **AKI and KRT: individualized approach**







#### **Grazie!**

