

WEBINAR 19/09/23

Welcome to

ERKNet/ESPN Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

<u>Galloway Mowat</u> <u>syndrome</u>

Speaker: Guillaume Dorval (Paris, France)

Moderator: Elena Levtchenko (Amsterdam, NL)

The European **Rare Kidney Disease Reference Network**

Galloway Mowat Syndrome

Guillaume DORVAL

Laboratory of Hereditary Kidney Disease Imagine Institute Molecular Genomics Hôpital Necker Enfants Malades, Université Paris Descartes Paris, France

guillaume.dorval@aphp.fr

Genetic basis of hereditary nephrotic syndrome

Isolated or syndromic SRNS

Adapted from Sarah Goncalves

4

Isolated or syndromic SRNS

5 Adapted from Sarah Goncalves

Isolated or syndromic SRNS

Isolated SRNS	Syndromic SRNS	
	Affected organs :	
Tissue-		
• NPHS2	 LAMB2 → Kidney + Brain + Eye (Pierson syndrome) WT1 → kidney + urogenital tract (Denys-Drash/Frasier syndrome) 	
Signaling pat	hways and tissue homologies ?	ALL ALL
 ACTN4 MYO1E TRPC6 ADCK4 Ubiquitous expression, only one affected organ 	 WDR73 NFX5, NUP205 INF2 KEOPS Ubiquitous expression, only few affected organs 	6

Adapted from Sarah Goncalves

SRNS and neurological involvement

Central nervous system anomalies

- Normal head size Microcephaly
- Galloway-Mowatt Syndrome: WDR73, OSGEP, TP53RK, TPRKB, LAGE3, NUP133, NUP107, WDR4
- Pierson Syndrome : LAMB2
- Mitochondriopathies
- SRNS and epilepsy (TRIM8)

Periphenal neuropathy +/- CNS involvement

CMT-FSGS : *INF2*

Galloway-Mowat Syndrome (GAMOS)

- 1rst description in 1968 by Galloway and Mowat (100 cases)
- Very rare autosomal recessive disorder
- Steroid-resistant nephrotic syndrome (SRNS)
- Microcephaly
- Central nervous system anomalies
- Clinically highly heterogeneous

Severe prognosis : death before the age of 6 years

Galloway-Mowat Syndrome (GAMOS)

- 1rst description in 1968 by Galloway and Mowat (100 cases)
- Very rare autosomal recessive disorder
- Steroid-resistant nephrotic syndrome (SRNS)
- Microcephaly
- Central nervous system anomalies
- Clinically highly heterogeneous

Severe prognosis : death before the age of 6 years

Renal disease	Microcephaly	Neurological manifestations/brain anomalies
Proteinuria to SRNS (ESKD)	Primary (at birth)	Developmental delay, hypotonia
Variableage of onset (congenital or later in childhood)	Secondary (post- natal)	Cortical and/or cerebellar atrophy
DMS or FSGS		Gyration defects (lissencephaly to polymicrogyria)
		Myelination defects

GAMOS genetic overview

GAMOS genetic overview

GAMOS genetic overview

Genetic basis of GAMOS: mutations in WDR73

Particular subset of GAMOS-affected children

- Secondary microcephaly
- No brain gyration defects
- Severe cerebellar atrophy

- Late renal disease
- Incomplete penetrance of the renal disease

 Homozygous mutations mostly truncating mutations

- Visual impairment/optic atrophy
- Seizures

Colin et al., AJHG, 2014; Ben-Omran et al., J Med Genet, 2015; Vodopiutz et al., Hum Mutation, 2015; Jinks et al., Brain, 2015; Rosti et al., Am J Med Genet, 2016; Jiang et al., Clin Chim Acta, 2017; El Younsi, Eur J Med Genet, 2019

Significant brain growth and morphology defects

Smaller/poorly differentiated midbrain & cerebellum

Crucial role of WDR73 in neural progenitor survival

- Integrator complex (Tilley et al., Sci Rep 2021)
 - Interaction with Integrator complex (INTS9/INTS11)
 - RNA (UsnRNA) maturation/ Transcription regulation

 Mutations INTS1/INTS8 : severe ID / microcephaly/cerebellar hypoplasia

Human immortalized podocytes

Role of WDR73 in maintaining neuron and podocyte differentiation state by inhibiting their re-entry into the cell cycle?

Human immortalized podocytes

siRNA

eiRN/

Genetic basis of GAMOS: KEOPS complex-genes

Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly

Daniela A Braun^{1,76}, Jia Rao^{1,76}, Geraldine Mollet^{2,3,76}, David Schapiro¹, Marie-Claire Daugeron⁴, Weizhen Tan¹, Olivier Gribouval^{2,3}, Olivia Boyer^{2,3,5}, Patrick Revy^{3,6}, Tilman Jobst-Schwan¹, Johanna Magdalena Schmidt¹, Jennifer A Lawson¹, Denny Schanze⁷, Shazia Ashraf¹, Jeremy F P Ullmann^{8,9}, Charlotte A Hoogstraten¹, Nathalie Boddaert^{3,10,11}, Bruno Collinet^{4,12,13}, Gaëlle Martin^{2,3}, Dominique Liger⁴, Svjetlana Lovric¹, Monica Furlano^{2,3,14}, I Chiara Guerrera¹⁵, Oraly Sanchez-Ferras¹⁶, Jennifer F Hu¹⁷, Anne-Claire Boschat¹⁸, Sylvia Sanquer^{19,20}, Björn Menten²¹, Sarah Vergult²¹, Nina De Rocker²¹, Merlin Airik¹, Tobias Hermle¹, Herman van Tilbeurgh⁴, Martin Zenker⁷, Corinne Antignac^{2,3,75}, & Friedhelm Hildebrandt¹

NATURE GENETICS VOLUME 49 | NUMBER 10 | OCTOBER 2017

- 22 mutations:
- -5 truncating
- -17 missense

- A truncating mutation is always associated to a missense mutation

Clinical features of KEOPS-related GAMOS patients

- Primary microcephaly
- Developmental delay
- Hypotonia, seizures
- Cortical and cerebellar atrophy
- Gyration (lissencephaly/pachygyria) and myelination defects

- Early-onset proteinuria at median age of 3 months (birth to 13 years)
- ESKD at median age of 11 months (1 month-13 years)
- **Histology**: Lesions of FSGS/ DMS and FPE

Polymicrogyria and diffuse cerebellar atrophy

Reduced myelination of the white matter

FSGS

FPE

Very severe phenotype Death at a median age of 6 months (6 weeks to 25 years)

Kinase Endopeptidase and Other Proteins of Small size

The ribosome binds new tRNA molecules and amino acids as it moves along the mRNa

The ribosome binds new tRNA molecules and amino acids as it moves along the mRN

Hypomodified tRNAs and human disease

The ribosome binds new tRNA molecules and amino acids as it moves along the mRNA.

	2nd position				
1st position	U	С	A	G	3/d position
U	Phe Phe Leu Leu	Ser Ser Ser	Tyr Tyr stop stop	Cys Cys stop Trp	DOAG
С	Leu Leu Leu	Pro Pro Pro Pro	His His Gln	Arg Arg Arg Arg	DOAG
A	lle lle Met	Thr Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	DCAG
G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu	GGGGG	DOAG
		Amino	Acids		

Hypomodified tRNAs and human disease

Hypomodified tRNAs and human disease

t⁶A biosynthesis pathway

t⁶A = N6-threonyl carbamoyl adenosine modification

= one of the few universally conserved tRNA modification

KEOPS role in humans was unkown

Functional characterization of KEOPS (1)

Knockdown in human podocyte cell lines (OSGEP/TP53RK/TPRKB)

Functional characterization of KEOPS (1)

Knockdown in human podocyte cell lines (OSGEP/TP53RK/TPRKB)

- > proliferation and cell migration
- ❑ cell survival and *¬* apoptosis
- Defects rescued only by wild-type proteins

Functional characterization of KEOPS (1)

Knockdown in human podocyte cell lines (OSGEP/TP53RK/TPRKB)

- Decrease of t⁶A levels
- Decrease in *de novo* protein synthesis (reflecting a defect in translation)

Functional characterization of KEOPS (2)

Yeast growth complementation studies

Δ Kae1 yeast

Functional characterization of KEOPS (2)

Yeast growth complementation studies

∆Kae1 yeast

KEOPS & t⁶A : animal models (1)

TUNEL staining (transverse brain section)

Osgep

↗ apoptotic cells in the cortex

- Osgep
 - 3 dpf

- **Osgep KO: embryonic lethality**
- Microcephaly in KO models, not in KI

Zebrafish

No renal phenotype

- Acute CRISPR KO Lage3/Osgep/Tprkb microcephaly @ E18,5 – No renal phenotype (Braun et al, 2017)
- Constitutive CRISPR KO :
 - *Gon7* KO : no renal/brain anomalies
 - *Osgep* KO: early embryonic lethality
- Constitutive CRISPR KI:
 - *Lage3* KI hemizygous (human p.Phe137Ser)
 - Osgep KI homozygous (human p.Arg325Gln) No renal/brain anomalies

KEOPS & t⁶A : animal models (2)

Drosophila Melanogaster

Functional characterization of KEOPS complex-genes : further delineation of the phenotype

OSGEP variant p.Arg325Gln

- Hypomorphic variant
- Acquired microcephaly, hypotonia, severe ID
- MRI: cerebellar atrophy/leukodystrophy
- Different kidney phenotype in the homozygous state: hypomagnesemia and nonnephrotic proteinuria without renal insufficiency

Functional characterization of KEOPS complex-genes : further delineation of the phenotype

TP53R

AMP+ADP+P

OSGEP variant p.Arg325Gln

- Hypomorphic variant
- Acquired microcephaly, hypotonia, severe ID
- MRI: cerebellar atrophy/leukodystrophy
- Different kidney phenotype in the homozygous state: hypomagnesemia and nonnephrotic proteinuria without renal insufficiency

Threonil-carbamoyl-AMP

Threonine

Mutations in C14Orf142 – patient phenotypic description

+

4 consanguineous families (Aurès region, Algeria) c.21 C>A : p.Tyr7*

- Secondary microcephaly
- Developmental delay
- Hypotonia
- Cortical and cerebellar atrophy/hypoplasia
- Thin corpus callosum
- Ventricular dilation
- Myelination defects (rarely)
- No gyration defect

1 consanguineous family c.19dup : p.Tyr7Leufs*16

- Early-onset proteinuria (2 to 5 years)
- ESKD (2.5 and 6 years)
- **Histology:** Lesions ranging from DMS to FSGS

More attenuated form of the disease in patients mutated for *C14* than for the KEOPS genes

C14/GON7 - Functional studies

- C14: Small disordered protein of unknown function
- Same size as yeast Gon7, but very weak sequence similarity
- C14 = GON7 = 5th element of human KEOPS ?
- Interacts with LAGE3 (proteomic studies, co-IP)

Géraldine Mollet

C14/GON7 - Functional studies

- C14: Small disordered protein of unknown function
- Same size as yeast Gon7, but very weak sequence similarity
- C14 = GON7 = 5th element of human KEOPS ?
- Interacts with LAGE3 (proteomic studies, co-IP)
- Becomes structured upon interaction with LAGE3 (SAXS)
- Increases stability of the KEOPS proteins

Géraldine Mollet

complex to modulate its function(s)

GON7 stabilizes the KEOPS

- Decreased expression of KEOPS protein when GON7 is absent
- Lower effect on proliferation, apoptosis and protein synthesis than the other KEOPS subunits

Identification of new genes involved in GAMOS

YRDC (Sua5)

GON7

Very severe phenotype, similar to that of KEOPS mutated patients

Arrondel et al. Nat Comm 19

YRDC – patient phenotypic description

Family A c.251 C>T (p.Ala84Val) (Mut1) c.721 724 del (p.Val241lle fs*72) (Mut2)

Family B c.794_796 del (Mut3) Hom

Clinical manifestations:

- ✓ Primary/secondary microcephaly
- ✓ Facial dysmorphy, hypotonia, seizures
- ✓ Hypothyroidism

MRI anomalies:

- Patient A.II.1 : normal MRI at 5 months, then progressive major cerebellar and cortical atrophy
 Marked abnormality of myelination
- ✓ Patient B.II.1: gyration defects

Clinical manifestations:

- ✓ Congenital nephrotic syndrome
- ✓ ESKD (1-4 months), death < 1 year</p>

Renal histology:

✓ Lesions of DMS and FPE

Very severe phenotype, similar to that of KEOPS mutated patients

Arrondel et al. Nat Comm 19

YRDC- Functional studies

*** \checkmark First enzyme of the t6A biosythesis t⁶A content (% of total ribonucleosides) 1.5 • CT ns YRDC OSGEP 1.0 ▲ C14 ■★■ Growth complementation studies in $\Delta sua5$ 0.5 0.0 TROC Ś OSGER C1A p.Ala84Val p.Leu265del p.Val241Ile fs*._ None None None Sua5 hYRDC-myc Sua5-myc Sua5-myc hYRDC-myc hYRDC-myc Mut 2 4 Mut 1 Mut 3 -**Amorphic allele Hypomorphic** t⁶A content Hypomorphic allele in patient's fibroblasts allele

YRDC- Functional studies

YRDC

✓ First enzyme of the t6A biosythesis

t⁶A content in patient's fibroblasts

Crucial role of t6A modification in the pathogenesis of GAMOS

Crucial role of t6A modification in the pathogenesis of GAMOS

YRDC

δ

KEOPS

Crucial role of t6A modification in the pathogenesis of GAMOS

YRDC

5

KEOPS

tRNA metabolism: WDR4 and m⁷G modification

m⁷G biosynthetic pathway

Holoenzyme WDR4/METTL1 (N7-méthylguanosine méthyltransférase)

- WDR4 non catalytic subunit
- m⁷G modification both on tRNA and rRNA
- One of the most prevalent tRNA modification, but not essential
- Regulation of mRNA export, splicing and translation

WDR4/METTL1

- Homozygous obligatory splice site mutation (c.454-2A>C) in WDR4, known to be mutated in microcephalic primordial dwarfism in 4 siblings with GAMOS (Braun et al., 2018)
- KO WDR4 or METTL1 mouse ES cells Defects in:
 - Translation of cell cycle genes
 - Proliferation (self renewal of murine stem cells)
 - Neural lineage differentiation capacity (Lin et al, 2018)

NUP genes mutations in GAMOS

(Rosti RO et al., 2017)

- Roles of NPCs (Nuclear pore complexes)
 - Nucleocytoplasmic transport in both directions
 - Cell division, chromatin organization, gene regulation
- Mutations in several NUP genes in isolated SRNS
- Mutations in genes encoding 2 proteins of the Y complex (NUP133 – NUP107) found in GAMOS (with childhood FSGS and primary microcephaly)

- Interaction defects/ Reduction in NPC density
- Nup133 MO Zebrafish
 - midbrain width and axonal number
 - Underdeveloped glomeruli and FPE

PRDM15 a new player in the field

- PRDM15: a Zn finger protein known to regulate the Notch pathway expression mainly in the lymphoblastoid cell lines
- KD in podocyte cell line → dysregulation of genes involved in development, cell proliferation and differentiation (including WT1, JAG1, PAX2)
- Recent identification of 3 homozygous missense variants in PRDM15

PRDM15 a new player in the field

- PRDM15: a Zn finger protein known to regulate the Notch pathway expression mainly in the lymphoblastoid cell lines
- KD in podocyte cell line → dysregulation of genes involved in development, cell proliferation and differentiation (including WT1, JAG1, PAX2)
- Recent identification of 3 homozygous missense variants in PRDM15

- One located in the Zn finger → GAMOS (with polydactyly/microcoria-coloboma/atrial septal defect) unable to promote transcription in a luciferase assay (Rspo1 promoter) or by ChIP
- Two located in the PR domain lead to SRNS Role in stability of the protein

Luciferase Assay

Conclusions

- GAMOS patients present mainly with mutations in the genes encoding KEOPS complex and WDR73 proteins, involved in RNA metabolism (tRNA modification, UsnRNA processing).
- Mutations in NUP genes as well as in *PRDM15* show possible alteration, in GAMOS, of other (but related) cellular mechanisms (nucleocytoplasmic transport and transcriptional regulation)
- Neurons and podocytes, both post-mitotic non dividing cells, are sensitive to translation process alterations, which lead to either decreased proliferation and/or increased apoptosis.
- Some gene mutations might lead either to GAMOS or isolated SRNS.
- Mouse and zebrafish models are not recapitulating the human renal phenotype.
- Studies on cerebral and brain organoids or various cell types derived from patient iPS cells might help better characterizing molecular defects at play in GAMOS.

Acknowledgements

Laboratory of Hereditary Kidney Diseases

Corinne Antignac Géraldine Mollet Christelle Arrondel Olivier Gribouval Bruno Estebe Olivia Boyer

Evelyne Huynh Cong

Gaëlle Martin Laurine Buscara Giulia Menara Marie-Claire Gubler

Semmelweis Univ (Budapest) Kalman Tory

y Collaborators

Boston Children's Hospital (Boston, USA) Friedhelm Hildebrandt Daniela Braun, Jia Rao David Shapiro Institute of Human Genetics (Magdeburg, Allemagne) Martin Zenker

Fonction et Architecture des Assemblages Macromoléculaires (Orsay)

Herman Van Tilbeurgh Bruno Collinet Dominique Liger Marie-Claire Daugeron

Genome dynamics in the immune system (Institut Imagine) Patrick Révy

All the clinicians

Daniella Magen (Haifa, Israël) Marina Charbit (Necker, Paris) Nathalie Boddaert (Necker, Paris) Chantal Loirat (Robert Debré, Paris) Marie-Alice Macher (Robert Debré, Paris) Annie Lahoche (CHRU de Lille) Robert Novo (CHRU de Lille) Bruno Ranchin (CHU de Lyon) Stéphane Decramer (CHU de Toulouse) Michel Tsimaratos (La Timone, Marseille) Brigitte Chabrol (La Timone, Marseille) Audrey Laurent (CHU de Lyon) Albertien van Eerde (Utrecht, Netherlands) Rozemarijin Snoeks (Utrecht, Netherlands)

Plateformes Imagine/SFR Necker

Protéomique / Génomique/ CRB/ Imagerie cellulaire / LEAT / iPS / Biochimie métabolomique et protéomique

Plateau Vectorologie de Lyon

Inserm

Géraldine Mollet

NEXT WEBINARS 07/11/23

<u>Predict Trial Results</u> William Morello (England, UK)

21/11/23

Lowe Syndrome Arend Bökenkamp (Amsterdam, Netherlands)

05/12/23

<u>ADPKD in children</u> Djalila Mekahli (Leuven, Belgium)

Subscribe our Newsletter Or follow us on Twitter @EuRefNetwork

Net Disease stwork

