

ERKNet The European Rare Kidney Disease Reference Network

WELCOME TO

ESPN/ERKNet Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

Date: 02 February 2021

Topic: C3 Glomerulopathies

Speaker: Christoph Licht

Moderator: Marina Vivarelli

Outline

- MPGN the traditional classification
- From MPGN to C3G the new classification
- Pathogenesis lessons learned from mice and men
- Diagnosis, treatment and outcome
- Summary and perspectives

MPGN – the traditional classification

Historical background

- Volhard and Fahr (1914): Die Brightsche Nierenkrankheit "Camera lucida" drawing of lobular glomerulonephritis
- Habib and Hamburger (1960): At the first worldwide Renal Biopsy Meeting, MPGN is first defined via a variety of findings made in patients with Bright's disease; MPGN becomes a formally named sub-type of glomerulonephritis ("a disease").
- Clinical phenotype (1960's):
 - Mean age 10 (range 2-17)
 - Nephrotic syndrome (70%)
 - Hematuria (90%)
 - Renal function "low" (33%)
- Clark West (1965):
 - Describes hypocomplementemia in MPGN
 - Complement defects (classical pathway) suspected

Wolstenholme and Cameron, Editors (1961). CIBA Foundation Symposium on Renal Biopsy: Clinical and Pathological Significance. West, J Pediatr 1965

Bright's disease

Volhard and Fahr (1914). Die Brightsche Nierenkrankheit

Membranoproliferative pattern

Membranoproliferative pattern

C3 and IgG

Membranoproliferative pattern

Membranoproliferative pattern (1970's-1980's)

- MPGN Type I: Subendothelial deposits West et al, J Pediatr 1965
- MPGN Type II / DDD: Deposits in lamina densa of glomerular basement membrane Galle, Thesis 1962; Habib et al, Kidney Int 1975
- MPGN Type III:

Subendothelial and subepithelial deposits

Burkholder et al, Am J Pathol 1969 Anders et al, Virchows Arch A Pathol Anat Histol 1997 Strife et al, Clin Nephrol 1984

© Elsevier Ltd. Kumar et al: Basic Pathology 7E www.studentconsult.com

Histological findings in MPGN include ... ?

- A. Electron dense deposits in various glomerular localizations
- B. C3
- C. IgG
- D. All of the above

Poll question #2

Which is not a cause of secondary MPGN?

- A. HIV
- B. Hepatitis B / C
- C. Leukemia / lymphoma
- D. Cystic fibrosis

Poll question #1

Secondary MPGN (80%)

Condition	Diagnosis
Infections (bacterial / viral / protozoal)	Hepatitis B / C EBV HIV Malaria Mycoplasma Tuberculosis
Systemic immune disease	Cryoglobulinemia Systemic lupus erythematosus Sjögren's syndrome Rheumatoid arthritis
Neoplasmas / dysproteinemias	Plasma cell dyscrasia Light / heavy chain disease Leukemia / lymphoma / other malignancies Waldenstrom macroglobulinemia
Chronic liver disease	Hepatitis / cirrhosis Alpha-1-antitrypsin deficiency
Miscellaneous (null C3 + null IgG)	TMA (aHUS / TTP) Radiation nephropathy Antiphospholipid syndrome Sickle cell disease Transplant glomerulopathy

From MPGN to C3G – the new classification

ORIGINAL ARTICLE

Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome

Aude Servais, Véronique Frémeaux-Bacchi, Moglie Lequintrec, Rémi Salomon, Jacques Blouin, Bertrand Knebelmann, Jean-Pierre Grünfeld, Philippe Lesavre, Laure-Hélène Noël, Fadi Fakhouri

J Med Genet 2007;**44**:193–199. doi: 10.1136/jmg.2006.045328

Servais et al, J Med Genet 2007

Historical vs. current classification of MPGN

C3 Glomerulopathy Consensus

and a second second

Pickering et al, Kidney Int 2013; Cook and Pickering, Nat Rev Nephrol 2015

First biopsy: IC-MPGN

Courtesy of Francesca Diomedi, Pathology, Bambino Gesu Pediatric Hospital, Rome, Italy

Second biopsy (+10 months): C3GN

Courtesy of Francesca Diomedi, Pathology, Bambino Gesu Pediatric Hospital, Rome, Italy

First biopsy: IC-MPGN

Courtesy of Patrick Walker, Arkana Laboratories, Little Rock, AR

Second biopsy (+6 months): C3GN

Courtesy of Patrick Walker, Arkana Laboratories, Little Rock, AR

Pathogenesis Lessons learned from mice and men

Which complement pathway is mainly involved in the pathogenesis of MPGN?

- A. Classical pathway
- B. Lectin pathway
- C. Alternative pathway
- D. Terminal pathway

Cfh-/- pigs

Hogasen et al, J Clin Invest 1995; Jansen et al, Kidney Int 1998; Hegasy et al, Am J Pathol 2002

Cfh-/- mice

Cfh-/-

C3

C9

Cfh-/-Cfb+/-

Pickering et al, Nat Genet 2002

Cfh-/-Cfb-/-

Activation

Amplification

Terminal

Alternative pathway activation and regulation

Alternative pathway dysregulation *aHUS vs. C3G*

Role of C3 in complement-mediated glomerular disease: *Cfh-/- Cfi-/-* mice

Rose et al, J Clin Invest 2008

Complement alternative pathway defects in C3G Summary

Glomerular complement profile in C3G

#	Probability Legend: over 95% 80% to 94% 50% to 79% 20% to 49% 0% to 19% Bio View: Identified Proteins (14/1395)	Patient 01	atient 02	atient 03	Patient 04	Patient 05	Patient 06	Patient 07	atient 08	Patient 09	atient 10	Patient 11	Patient 12
1	* Complement C3	71	44	79	10	15	21	75	24	8	7	25	22
2	* Complement factor H-related protein 1	22	5	16	3	2	7	19	11	4	3	7	5
3	* Complement component C9	21	15	17	7	4	4	14	6	-	4	2	3
4	* Complement C5	16	7	13	4	4	6	16	2		2	6	7
5	* Complement factor H-related protein 5	11	7	3			1	2	3			1	3
6	* Complement component C8 alpha chain		2	9	1	1	1	6	2			1	2
7			4	5	2	2	2	3	3		2		2
8 * Complement component C8 beta chain		6	3	5	1	2	2	3	2		1		1
9			2	5	1			5					3
10	🔸 Complement component C8 gamma chai	n 3	2	4	1	1	2	2			1		
11	* Complement C4-A	3			1	1							2
12	* Complement factor H-related protein 2	4		2				2					
13	* Complement factor H	7		1									1
14	* Complement factor I								1			1	

Sethi et al, Kidney Int 2009; Sethi et al, Nephrol Dial Transplant 2017

品版的 (D.1.1%)

145 T 11 1860

Autoimmune causes for C3G Autoantibodies

	Incidence	Co-existing with C3Nef?	Effect on complement	Routine testing?
C3NeF	Common	-	Stabilizes AP C3 convertase	Yes
C4NeF	Rare	Yes	Stabilizes CP C3 & C5 convertases	No
C5NeF	Rare	Yes	Stabilizes AP C5 convertase	No
Anti-FB Ab	Rare	No	Stabilizes AP C3 convertase	No
Anti-C3b Ab	Rare	No	Stabilizes AP C3 convertase	No
Anti-FH Ab	Rare	Yes	Fluid phase regulation	Yes

Genetic causes for C3G

Gene/Protein	Mutation/SNP	Function	Phenotype
FH	Homo-/compound heterozygous SCRs 1–4 (regulatory domain)	Intact surface binding Reduced C3b binding Loss of FH cofactor and decay-accelerating activity	C3G IC-MPGN
FI	Homozygous Heterozygous	Decreased FI mediated C3b degradation	C3G IC-MPGN
C3	Heterozygous	C3mut – resistant to cleavage by C3bBb C3mut convertase – resistant to FH inactivation C3 binding with FI or FH	C3GN IC-MPGN
FB	Heterozygous/ homozygous	Alters C3-FB interaction	C3G IC-MPGN
THBD	Homozygous	Not tested	DDD
DGKE	Homozygous Heterozygous – unclear impact	Not complement mediated	MPGN

Genetic causes for C3G Susceptibility variants

latropoulos et al, Mol Immunol 2016

The role of FHRs in C3G

- 11 y/o male
- Macroscopic hematuria, nephrotic range proteinuria
 3 days post chicken pox immunization
- Kidney biopsy: DDD
- Treatment with prednisone and MMF
- Nevertheless, progression to ESKD within 3 months (PD)
- Kidney transplant (deceased donor) after 4 years
- Proteinuria recurs immediately post TX
- Complement system:
 - Low C3; normal C4
 - C3NeF positive
 - No mutations in FH, FHR5, FI, MCP/CD46, THBD/CD141, FB, C3

Post-TX day 6

Post-TX day 17

Post-TX day 180

Serial biopsies of renal graft

Three copies of FHR1 - 150% plasma FHR1

FHR1 ELISA

Competition between FHR1 and FH

- FHR1 competes with FH for surface and C3b binding
- FHR1 lacks intrinsic cofactor activity
- FHR1 surplus impairs complement regulatory activity of FH on surfaces

FHRs 1, 2, 5 are prone to form dimers / oligomers

Goicoechea de Jorge et al, PNAS 2013; Barbour et al, Nephrol Dial Transplant 2016

Genetic causes for C3G – FH deregulation

Protein name	Protein structure	Phenotype	Comments				
Normal proteins							
FHR1	12345	NA	Homodimerizes and heterodimerizes with FHR2; competitive antagonist of factor H; C5 convertase inhibitor and terminal complement cascade blocker				
FHR2	1234	NA	Homodimerizes and heterodimerizes with FHR1; competitive antagonist of factor H; C3 convertase inhibitor				
FHR3	12345	NA	Exact function unknown				
FHR5	123456789	NA	Homodimerizes; competitive antagonist of factor H; binds to extracellular matrix; complement amplifier and surface anchor for properdin				
Fusion proteins							
FHR2 ₁₂ -FHR5 ₁₋₉	12123456789	DDD	Normal gene copies present in variant allele: CFHR3, CFHR1 and CFHR4				
FHR5 ₁₂ -FHR5 ₁₋₉	12123456789	C3GN	Normal gene copies present in variant allele: CFHR3, CFHR1, CFHR4, CFHR2 and CFHR5				
FHR3 ₁₋₂ -FHR1 ₁₋₅	1212345	C3GN	Normal gene copies present in variant allele: CFHR3, CFHR1, CFHR4, CFHR2 and CFHR5				
FHR112-FHR51-9	12123456789	C3GN and/or DDD	Normal gene copies present in variant allele: CFHR3 and CFHR5				
$FHR1_{1\!\rightarrow\!4}-FHR1_{1\!\rightarrow\!5}$	123412345	C3GN	Normal gene copies present in variant allele: CFHR3, CFHR4, CFHR2 and CFHR5				
FHR5 ₁₂ -FHR2 ₁₄	121234	C3GN	Normal gene copies present in variant allele: CFHR3, CFHR1, CFHR4, CFHR2 and CFHR5				

Smith et al, Nat Rev Nephrol 2019

FH deregulation in C3G via FHR multimers Normal

Xiao et al, Mol Immunol 2016

Diagnosis, treatment and outcome

Diagnostic workup for C3G patients

Global complement function	CH50, APH50		
Complement activation			
Terminal pathway activation	SC5b-9		
Complement protein levels	CFH, CFI, CFB	Other Nephritic factors	
Autoimmune forms	C3 Nephritic factor (C3NeF) CFH/CFB/C3b autoantibodies		
Genetic forms	Mutations/CNVs in CFH MCP/CD46, C3 CFHR-5		
		Genetic variants in FHR locus	

How to treat C3G patients?

- A. There is no treatment for C3G.
- B. Transplant is a definitive treatment for C3G.
- C. Current treatment recommendations for C3G mainly rely on case reports / small case series.
- D. Current treatment recommendations for C3G build on RTCs.

Treatment Immunosuppression

Steroids:

• Benefit of long-term (6-12 months) low-dose steroids in patients with MPGN and C3G with respect to proteinuria and renal function.

Mycophenolate mofetil (MMF):

- Benefit of use alone or in combination with steroids in patients with primary MPGN with respect to proteinuria and renal function.
- 5/9 children with MPGN treated with steroids + MMF for 40 months had CR/PR (of note, all patients with low C3 failed).
- 42/97 C3G patients (81 C3GN; 16 DDD) treated with steroids + MMF had remission of proteinuria and prevention of renal failure compared to other immunosuppression and eculizumab regardless of presence of complement mutations and/or autoantibodies.
- 22/30 C3G patients treated with steroids + MMF and f/u of 22 months had CR/PR. 50% of patients with MMF taper relapsed.

KDIGO expert opinion:

- MMF is beneficial in patients with IC-MPGN and C3G.
- Following steroid taper over 6-12 months, MMF monotherapy is continued for 12-18 months.

Treatment - Plasma

Reference	Diagnosis	Patients	Treatment	Outcome		
Pérez-Sáez et al, Transplant Proc 2011	MPGN I	1 adult	PF	Partial response Deterioration of renal function Proteinuria		
Kmar et al, Clin Nephrol 2011	DDD	1 adolescent	Cyclo +	Complete remission Normal kidney function Normal AP actvity		
Reference	Diagnosis	Patients	Treatment	Complete remission Outcome		
Haeffner et al, Pediatr Nephrol 2015	C3G (Mut. neg., C3Nef pos.)	4 children	PE + Steroids + MMF <i>Eculizumab</i>	Partial response Proteinuria improved (4/4) / normalized (2/4) eGFR normalized (4/4) C3 improved (2/4) TCC improved (2/4) (2 were always normal) C3NeF negative (4/4)		
McGinley et al, Nephron 1985	MPGN I / III DDD	4 adults	PE	MPGN: Improved proteinuria Stabilization of kidney function DDD: Improved kidney function in 1 patient		
Oberkircher et al, Transplant Proc 1988	DDD (TX)	1 child	IPF	Partial response Improved renal outcome		
Kurtz and Schlueter, J Clin Apher 2002	DDD (TX)	1 adolescent	IPF	Stabilized kidney function Treatment discontinued – graft loss		

Treatment *Eculizumab*

	Patients	Complete response	Partial response	No response	Treatment response correlated with
Vivarelli, 2014	13 patients C3G / DDD Native / TX kidneys C3Nef / genetic	10 (77%)	1 (8%)	2 (15%)	Elevated sC5b-9Shorter disease duration
LeQuintrec, 2018	26 patients 13/26 pediatric 14 months	6 (23%)	6 (23%)	14 (54%)	 Rapidly progressive disease & intense extracapillary proliferation Complement AP mutations / autoantibodies made no difference
Ruggenenti, 2019 (EAGLE study: 2 x 48 weeks ecu with 12 weeks washout; aimimg at improvement in proteinuria @ 24 / 48 weeks)	10 patients 6 MPGN, 4 C3G All normal renal function, high proteinuria and high sC5b-9	0	3 (30%)	7 (70%) – improvement during first period, but benefit lost during washout	

Eculizumab in IC-MPGN/C3G currently recommended as rescue therapy, only. Best response in patients with recent onset of disease, intense inflammation, and high C5b-9 levels.

Outcome

Diagnosis	Patients	Follow Up	Outcome	Reference
MPGN	50 children	11 years (median)	50% ESKD in 10-15 years	Schwertz et al, Pediatr Allergy Immunol 2001
C3GN	12	26.4 months	Stable kidney function	Sethi et al, Kidney Int 2012
DDD vs C3GN	80	28 months	47% DDD and 23% C3GN progress to ESKD	Medjeral-Thomas et al, Clin J Am Soc Nephrol 2014
MPGN / C3GN	134	10 years	63.5% renal survival (MPGN, DDD, C3GN show no difference)	Servais et al, Kidney Int 2012
IC-MPGN / C3G	165	4 years	100% show preserved kidney function	Kirpalani et al, Kidney Int Reports 2020
		10 years	80% do not meet composite outcome (eGFR <30; 50% eGFR reduction; initiation of RRT)	

Negative outcome predictors:

- Age at presentation
- eGFR
- Proteinuria
- Hypertension
- Kidney biopsy: glomerular crescents

Outcome Renal transplant

- 32.4% risk of graft loss from recurrence at 5 years post TX in children with MPGN. (Van Stralen et al, Nephrol Dial Transplant 2013 – ESPN/ERA-EDTA registry)
- Greater risk of graft loss from recurrence in children with DDD. (Braun et al, J Am Soc Nephrol 2005 – NAPRTCS registry)
- 66.7% risk of graft loss from recurrence in C3G patients with median time to graft failure of 6.4 years. (Zand et al, J Am Soc Nephrol 2014)
- Cohort of n=35 C3G patients: Recurrence risk of 43% in MPGN, 55% in DDD, and 60% in C3GN patients. (Servais et al, Kidney Int 2012 – French cohort)
- Cohort of n=13 C3G patients (6 DDD; 7 C3GN):
 - 69% overall graft survival at 5 years.
 - All 6 DDD recurred, and 3 (50%) failed due to recurrence.
 - 4/7 (57%) C3GN recurred, and 3/4 (75%) failed due to recurrence.
 - (Medjeral-Thomas et al, J Am Soc Nephrol 2014 English cohort)

High risk of disease recurrence and graft failure due to recurrence in patients with MPGN < DDD < C3GN.

Summary and perspectives

Smith et al, Nat Rev Nephrol 2019

Next Webinars

ERKNet/ERA-EDTA Advanced Webinars on Rare Kidney Disorders

Date: 16 Feb 2021

Speaker: Frank Bridoux

Topic: Paraprotein associated disease

ESPN/ERKNet & ERA-EDTA Webinars on Rare Kidney Disorders

Date: 02 March 2021

Speaker: Hans Joachim Anders & Steven Marks

Topic: Lupus nephritis in children & adults

ERKNet/ERA-EDTA Advanced Webinars on Rare Kidney Disorders

Date: 16 March 2021

Speaker: Olivier Devuyst

Topic: Uric acid disorders

Subscribe the ERKNet and IPNA Newsletter and don't miss Webinars!

Atypical PIGN - a role for complement defects?

	Postinfectious glomerulonephritis (F	PIGN)		Atypical' postinfec glomerulonephritis			C3 glomerulon (C3GN)	nephritis		
LM	1 Diffuse proliferative, less commonly mesangial proliferative, or crescentic			Diffuse proliferative, less commonly mesangial proliferative, or crescentic			Membranoproliferative and less commonly mesangial proliferative			
IF	Bright mesangial and capillary wall C3,			Bright mesangial and capillary wall C3, usually without lgs. If present lgG (trace to $1+$)			Bright mesangi without Igs	Bright mesangial and capillary wall C3, usually		
EM	usually with Igs (garland pattern) Numerous subepithelial humps, few		I	Numerous subepith	nelial humps,	many	Many mesangia	Many mesangial and subendothelial deposits,		
	mesangial, and subendothelial deposits			mesangial and subendothelial deposits, and \pm intramembranous deposits			\pm few intramembranous, and subepithelial humps			
Abbrev 9	Abbreviations: EM, electron microscopy; IF, immunofluorescence; Ig, immunoglobulin; LM, light microscopy. 9 No mutations No mutations Negative 9% Abnormal 77% Positive (both assays) ND									
10	c.1699A > G, p.Arg	567Gly	No m	utations	Negative	0%, Normal	0% Abnormal	Positive (both assays		
11	No mutation	S	No m	utations	Negative	0%, Normal	130%	Positive (C3CSAP)	0.21 mg/l	
-	Post infectious omerulonephritis		000	Infection			Recovery		<u>)</u>	
	Atypical post infectious omerulonephritis		000	Infection			Slow recovery or		C	
0	·	Se	thi et al	, Kidney Int 2013; I	Nicolas et al	hen	ersistent naturia and roteinuria			

Long-Term Outcomes of C3 Glomerulopathy and Immune-Complex MPGN in Children

