

ERKNet

Rare Kidney Disease Reference Network

WELCOME TO

ERKNet Advanced Webinars on Rare Kidney Disorders

Date: 21 December 2021

Topic: Monogenic forms of hypertension

Speaker: Francesco Trepicione (Naples, Italy)

Moderator: Tom Nijenhuis (Nijmegen, Netherlands)

- Why the kidney is involved in blood pressure regulation?
- Monogenic form of hypertension

 Case reports introducing physiopathology

The Kidney – Salt – Blood Pressure

Infinite feedback gain system

Guyton AC Hypertension 1990

Genetic causes of Hypertension

Genome wide association studies for primary hypertension

280 gene variants

Strict Genetic Enviroment - interaction

Frequency of Secondary Hypertension/age

In Hypertensive Chinese Han population
(n: 1179) with Hypertension onset < 35y/o
2.4% were diagnosed affected by one of the known Monogenic Form of Hypertension

Bao M et al. J Med Genet 2019

Viera AJ et al. Am Fam Physician 2010

Target organ for monogenic form of Hypertension

Mineral-active steroids overproduction & Aldosterone-sensitive distal nephron

- Hypertension
- Normo/Hypo-kaelemia
- Genital and/or puberal abnormalities
- Lab Steorids Abnormalities

Hypertension Exacerbated by Pregnancy: - NR3C2

Gordon Syndrome: - WNK1 - WNK4 - KLHL3 - CUL3

Apparent Mineraloc. Excess: - *HSD11B2*

Liddle syndrome: - SCNN1B - SCNN1C - SCNN1A

Sodium transport along the distal nephron

Case Report 1: unexpected hyperkalemia

A 17 y/o male presented with:

- High Blood Pressure (138–142 /90–92 mmHg)
- hyperkalemia (6.1 mM)
- hyperchloremic metabolic acidosis (HCO₃⁻ 19 mM)

Pool question 1: What would you ask for?

- 1. Serum creatinine and glucose
- 2. Pharmacological Anamnesis
- 3. CT scan of the kidneys
- 4. Doppler ultrasound of renal arteries

Case Report 1: unexpected hyperkalemia

• eGFR normal

• Renin and aldosterone were at lower normal range (4.2 mlU/L and 220 pmol/L)

• Renal ultrasound was normal and the patient was asymptomatic.

Case Report 1: Familial Hypertension with Hyperkalemia and metabolic acidosis

After 1 month of treatment with HCTZ, complete recovery to normal blood K and HCO_3^-

Anglani F. et al J. Nephrol 2021

Gordon Syndrome Familial Hyperkaliemic Hypertension PseudoHypoAldosteronism type II

Gordon

- Hyperkalaemia
- Met. Acidosis
- Hypercalciuria
- Low Renin
- Hypertension

Gene involvement

Causative genes and inheritance

Hureaux M et al. Kid Int Reports 2021

Gene frequency by age

CUL3 KLHL3 AD KLHL3 AR WNK1 Ac. M WNK4 WNK1 Intron 1 del

Hureaux M et al. Kid Int Reports 2021

Genotype to phenotype correlation

-			••	••	•	~		
All patients (N = 153)	Normal values (when applicable)	<i>CUL3</i> n = 19	<i>KLHL3</i> AR n = 16	<i>KLHL3</i> AD n = 56	<i>WNK4</i> n = 10	<i>WNK1</i> intron 1 del. n = 23	<i>WNK1</i> acidic motif n = 29	P (Kruskal-Wallis test)
Sex M/F		9/10	13/3	23/33	5/5	9/14	13/16	
age at work-up, years		7 [2-16] ^H ^v	9 [4-26]	33 [19-52] ^v	38 [13-43]	36 [17-49] ^H	27 [6-45]	<0.0001
age at discovery*		5.5 [2.0-14.3] ^N	5.5 [2.5-31.7]	24.0 [11.0-44.0] ^N	19.0 [15.8 -27.5]	36.0 [8.0-37.0]	16.5 [4.8-24.25]	0.0308
Na ⁺ , mmol/l	136-145	138 [136-140] ⁷	138 [136-139] ³	139 [137-140] ⁷	139 [137-141]	139 [139-140] ¹	140 [139-141] ⁷	0.04
K ⁺ , mmol/l	3.5-5.1	7.1 [6.8-7.6] ^{4€H} [∨]	6.9 [5.8-8.0] ^{1Δθμ}	5.5 [5.2-6.0] ^{9μν}	5.9 [5.4-6.4]	5.5 [5.3-5.8] ^{10H}	5.7 [5.1-6.1] ^{4∆€}	<0.0001
Cl⁻, mmol/l	95-105	113 [111-116] ^{4Εην}	111 [109-113] ^{3M}	107 [105-110] ^{11Mv}	112 [108-114] ¹	108 [106-111] ^{ויז}	108 [106-110] ⁷	<0.0001
HCO3-, mmol/l	22.0-27.0	16.0 [15.1-	18.2 [15.0-	22.0 [19.4-	22.1 [18.8-	23.8 [22.0-	19.7 [18.2-	< 0.0001
		17.0]	19.5] ^{30µ}	23.5] ^{13µv}	23.8]^	27.0]1014	21.1] ⁷	
eGFR, ml/min per 1.73 m ² **	>90	117 [100-131] ¹⁰	108 [104-193] ⁸	94 [82-108] ²¹	96 [84-138] ¹	88 [58-139] ⁴	94 [73-124] ¹¹	nd
Protides, g/l	63-78	70 [60-73] ¹²	72 [66-83] ¹²	70 [65-73] ¹¹	69 [67-70]	69 [65-71] ²	66 [64-73] ¹⁰	nd
Uric acid, µmol/l	137-393	225 [170-369] ¹³	291 [291-316] ¹²	279 [166-320] ⁴⁷	222 [177-311] ⁵	182 [182-182] ²²	178 [160-193] ¹⁴	nd
Total calcium, mmol/I	2.09-2.52	2.38 [2.30-2.50] ¹³	2.31 [2.20- 2.40] ¹¹	2.32 [2.21-2.44] ³⁴	2.31 [2.27- 2.40]	2.48 [2.48-2.48] ²²	2.32 [2.21- 2.40] ⁸	nd
Magnesium, mmol/l	0.64-0.90	0.86 [0.84-0.89] ¹⁷	0.73 [0.70- 0.90] ¹²	0.82 [0.75-0.86] ⁴⁹	0.86 [0.86- 0.86] ⁹	0.69 [0.66-0.79] ¹⁹	0.79 [0.76- 0.81] ²²	nd
Renin lying, pg/ml	1.5-17.0	2.5 [0.6-2.9] ¹²	2.7 [1.5-4.4] ⁹	3.3 [1.4-5.0] ³⁵	6.1 [3.4-10.0] ³	5 [2.8-9.0] ¹³	2.3 [0.8-5.1] ¹⁶	nd
Aldosterone lying, pg/ml (RIA)***	40-200	102 [28-514] ⁹	50 [21-148] ⁷	56 [37-127] ³⁰	190 [41-258] ²	105 [60-207] ¹²	188 [69-242] ¹²	nd

Hureaux M et al. Kid Int Reports 2021

Additional clinical features

	WNK1	WNK4	KLHL3	CUL3	
Hypertension	Least severe phenotype and metabolic disorder often precedes hypertension	Metabolic disorder often precedes hypertension	Recessive mutations are more severe and diagnosed at an earlier age than dominant mutations	Most severe phenotype. Presents at youngest age (>90% had hypertension <age 18.<="" td=""></age>	
Hyperkalaemia	Least severe	Yes	Dominant mutations had significantly higher serum K ⁺ than recessive mutations	Most severe Presents at youngest age	
Metabolic Acidosis	Least severe	Yes	Yes	Most severe	
Other features		Hypercalciuria Hypocalcaemia Decreased bone mineral density Renal calcium stones		Fertility likely affected in de novo mutations. Growth impairment most likely	

How WNK1, WNK4, KLHL3 and CUL3 gene regulate NCC activity

... courtesy from Juliette Hadchouel

Gordon Syndrome pathogenesis

Tg(Wnk₄^{PHA2}) mice recapitulates FHH

Wnk4 Q562E carrying mutation from Lifton's lab

López-Cayuqueo KI, et al. Kid Int 2018

Could Acidosis be caused by hyperkalemia?

HypeK⁺ interfers with ammonium metabolism

Normalizing blood [K] does not correct metabolic acidosis

Tg(Wnk4^{PHA2}) were kept 4 days on a Low K diet

López-Cayuqueo KI, et al. Kid Int 2018

Could FHH be associated to a form of dRTA?

ENaC is responsive to amiloride as in control mice

Control TgWNK4PHAll

López-Cayuqueo KI, et al. Kid Int 2018

Tg(Wnk₄^{PHA2}) mice properly respond to acid load

López-Cayuqueo KI, et al. Kid Int 2018

Could bicarbonate leak play a role?

Pds activity is increased in Tg(Wnk₄^{PHA2})

López-Cayuqueo KI, et al. Kid Int 2018

B-IC number is increased in Tg(Wnk₄^{PHA2})

PDS – H⁺ATPase – AE1

h

Ablation of pendrin in Tg(Wnk₄^{PHA2}) restores acid-base and potassium homeostasis

Table 1 | Blood parameters of control, TgWnk4^{PHAII};Pds^{+/+}, and TgWnk4^{PHAII};Pds^{-/-} mice

Blood	Control	TgWnk4 ^{PHA2} ;Pds ^{+/+}	TgWnk4 ^{PHA2} ;Pds ^{-/-}
pH	7.26 ± 0.01	7.26 ± 0.01	$7.30 \pm 0.01^{\#}$
PCO ₂	56 ± 1	$51 \pm 1^{*}$	54 ± 2
HCO ₃ [−] , mM	$\textbf{22.9} \pm \textbf{0.7}$	$\textbf{20.8} \pm \textbf{0.3}^{*}$	$23.7 \pm 0.6^{\#\#\#}$
Na ⁺ , mM	148.5 ± 1.0	148.6 ± 0.6	149.9 ± 0.4
Cl⁻, mM	109.1 ± 0.4	$114.0 \pm 0.4^{****}$	$112.0 \pm 0.5^{\#}$
K ⁺ , mM	4.40 ± 0.07	$5.08 \pm 0.08^{****}$	4.39 ± 0.06 ^{####}
Hematocrit, %	$\textbf{42.5} \pm \textbf{0.8}$	$39.8 \pm 0.4^{**}$	$41.8 \pm 0.5^{\#}$

López-Cayuqueo KI, et al. Kid Int 2018

New model for pathogenesis of FHH

Additional extra-renal pro-hypertensive mechanisms from Cul^{∆9} mice

Abdel Khalek W et al. JASN 2019

Case Report 2: a baby with hypokalaemia and metabolic alkalosis

>

- 1 y/o baby admitted for failure to thrive
- K⁺: 2.1 mM <
 Na⁺: 143 mM =
 Cl⁻: 94 mM <
- Mg²⁺: 0.91 mM
- UCa²⁺/Creat: 0.31 mg/mg

Pool question 2: What is the most likely diagnosis?

- 1. Gordon Syndrome
- 2. Gitelman Syndrome
- 3. Bartter Syndrome
- 4. Apparent Mineralocorticoids Excess
- 5. Liddle Syndrome

Differential diagnosis require evaluation of volemia

AME

- Hyporkalaemia
- Met. Alkalosis
- Hypercalciuria
- Polyuria
- Low Renin & Aldo
- Hypertension
- CKD

Bartter

- Hyporkalaemia
- Met. Alkalosis
- Hypercalciuria
- Polyuria
- High Renin & Aldo
- Hypotension
- Rare CKD

Case Report 2: a baby with hypokalaemia and metabolic alkalosis

- Born pre-term by consanguineous parents
- Aldosterone & Renin <<
- By 4 y/o Hypertension more evident
- Nephrocalcinosis
- Progressive CKD since 11 y/o, currently CKD IV at 30 y/o
- Genetic Analysis revealed p.Arg208His HSD11B2 mutation

Apparent Mineralcorticoid Excess Syndrome

- Autosomal Recessive Inheritance
- Failure to thrive and low stature
- Hypertension
- Low renin and aldosterone levels
- Hypokalaemia with metabolic alkalosis
- Polyuria and polydipsia
- Nephrocalcinosis
- High serum cortisol to cortisone (or their metabolites) ratio
- Increased cardiovascular risk

Pathogenesis of AME

Residual HSD11B2's activity correlates with phenotype severity

Morineau G. et al. JASN 2006

Case Report 3: severe hypertension

- 13 y/o boy presented with:
- BP:185/105 mmHg
- K⁺ : 3.2 mM
- Metabolic Alkalosis
- Low Renin Acitivity
- Low serum aldosterone

Pool question 3: What would you consider as differential diagnosis?

- 1. Gordon Syndrome
- 2. Renovascular Hypertension
- 3. Familial Hyperaldosteronism I or II or CAH
- 4. Apparent Mineralocorticoids Excess
- 5. Liddle Syndrome

Case Report 3: severe hypertension

- Steroid profile normal
- 3 months on spironolactone had not clinical and biochemical response

Liddle Syndrome

- Autosomal Dominant Inheritance
- Hypertension
- Low renin and aldosterone levels
- Hypokalaemia (may be absent or very mild)
- Metabolic alkalosis
- Mineralocorticoid Receptor Antagonist resistant
- Increased cardiovascular risk

Pathogenesis of Liddle Syndrome

Hypertension

Hypokalaemia

Met Alkalosis

Snyder P et al. Sci. Signal 2009

Systemic role of ENaC for BP control

Van Huysse J et al. Hypertension. 2012

ENaC expression on tongue control salt - taste

J Chandrashekar et al. Nature 2010

Conclusion

Table 1 Characteristics of and treatments for monogenic forms of low-renin hypertension.

Disorder	Age of onset	Pattern of inheritance	Aldosterone level	Serum potassium level	Genetic test (reference)	Treatment ^h
FH-I (GRA) ^a	Second or third decade	Autosomal dominant	High	Decreased in 50% of cases; marked decrease with thiazides	Commercial	Glucocorticoids
FH-II ^a	Middle	Autosomal dominant	High	Low to normal	Research (11)	Spironolactone, eplerenone
DOC oversecretion due to CAH ^{b,c}	Childhood	Autosomal recessive	Low	Low to normal	Research (25)	Glucocorticoids
Activating MCR mutation exacerbated by pregnancy ^d	Second or third decade	Unknown	Low	Low to normal	Research (14,15)	Delivery of fetus
AME ^{b,e}	Childhood	Autosomal recessive	Low	Low to normal	Commercial	Spironolactone, dexamethasone
Liddle syndrome ^f	Third decade	Autosomal dominant	Low	Low to normal	Commercial	Amiloride, triamterene
Gordon's syndrome ^g	Second or third decade	Autosomal dominant	Low	High	Research (22)	Thiazide diuretic, low-sodium diet

Garovic V et al. Nat Clin Pract Nephrol 2006

Next Webinars

ESPN/ERKNet Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

Date: 18 Jan 2022

Speaker: Michal Maternik

Topic: PUV

ESPN/ERKNet Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

Date: 25 Jan 2022

Speaker: Laurence Heidet

Topic: Renal tubular dysgenesis

ERKNet Webinars

Date: 01 Feb 2022

Speaker: Jack Wetzels

Topic: KDIGO Guideline on Immune Glomerulopathies I: MCD/MN

Subscribe the ERKNet and IPNA Newsletter and don't miss Webinars!