

WEBINAR 22/03/22

Welcome to

ERKNet/ESPN/ERA Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

Mendelian and nonmendelian inheritance

Speaker: Kalman Tory (Budapest, Hungary)

Moderator: Elena Levtchenko (Leuven, Belgium)

May I ask your specialty?

- clinical genetics
- pediatric nephrology
- adult nephrology
- research, molecular biology
- other

Mendel's Principles of Heredity

Seven binary characters of pea plant

20/07/1822 – 1884 ,chronic nephritis' P

characters are unitary: not a blend, and corresponds to one of the parental character: ,the dominant'

F1

the ,recessive' characters reappear unlinked in the second generation in 25% of the offspring

F2

Mendel's Principles of Heredity

Seven binary characters of pea plant

20/07/1822 – 1884 ,chronic nephritis'

P

characters are unitary: not a blend, and corresponds to one of the parental character: ,the dominant'

F1

the ,recessive' characters reappear unlinked in the second generation in 25% of the offspring

F2

alternate forms (alleles) of hereditary factors (genes) are created random and unlinked in the gametes

Differences between Mendel's experiments and the human monogenic disorders

pea plant in Mendel's experiments

- inbred, homogeneous population
- single allele for each phenotype

each allele gave 50% of all, in each generation

human monogenic disorders

heterogeneous population

- both the disease-causing and the benign alleles are heterogeneous
- pathogenic alleles are rare

Mendelian genetics in clinical practice

1. the disease-causing allele is dominant and located on an autosome

Mendelian genetics in clinical practice

2. the disease-causing allele is recessive and located on an autosome

Two affected siblings, at least one of whom is girl: AR

Oligogenic inheritance - two genes, three alleles

Monogenic disorders are clustered in families, rare multifactorial disorders are sporadic

- The higher the number (n) of the alleles required for a disease, the less likely is its inheritance (0.5ⁿ): **the less likely is familial clustering**
- The more family members are affected by the same disorder, the more likely it is monogenic

Severe AD disorders cannot be transmitted, thus always result from *de novo* mutations: mendelian but no familial clustering

Monogenic vs. non-mendelian diseases

monogenic / mendelian

- 1. determined by a *single* gene
- completely penetrant
- possibility of presymptomatic / prenatal diagnosis
- 2. familial clustering is possible
- in some families they show typical transmission pattern / clustering
- most are still sporadic

non-mendelian

- determined by several genes / environmental factors
- ,incompletely penetrant'
- only a risk might be estimated
- 2. sporadic in general
- > no familial clustering
- unless a relatively frequent disorder (diabetic nephropathy)

Mendelian disorders are frequent in childhood ESRD

Etiology of end-stage renal disease

Childhood Adulthood

ERA/EDTA registry

https://www.usrds.org/reference.aspx

Do you ask the parents about their potential consanguinity when you consult a child with a nephropathy of unknown etiology?

- 1. most of the time
- 2. only if they come from populations with a high degree of CS
- 3. I prefer not, it can be insulting
- 4. I am an adult nephrologist...

Risk of having an affected child in consanguineous families in function of the prevalence of autosomal recessive diseases

Monogenic nephropathies with an unexpected transmission pattern

This is the phenotype that is transmitted in a dominant or a recessive fashion

The transmission pattern reflects the underlying pathophysiology

- 1. 50% function loss (haploinsufficiency)
 - 2. dominant negative effect
 - 3. gain of function
 - 4. second hit

(almost) complete loss of function

autosomal recessive n ~ 3400 disorders

A protein may be dysfunctional through different mechanisms

The transmission pattern related to the same gene may vary

PKD1-related polycystic kidney disease may occasionally be transmitted in an AR fashion

null mutation of PKD1: ADPKD

hypomorphic mutations of *PKD1*: autosomal recessive transmission

hyperechogenic, enlarged kidneys in utero, neonatal respiratory insufficiency

NPHS2-associated podocytopathy exceptionally transmitted in an AD fashion

NPHS2, encoding podocin - AR SRNS

Boute et al, Nat Genet, 2000

de novo NPHS2 mutation (L330Vfs*15), AD FSGS

Suvanto et al, Clin Exp Nephrol, 2016

NPHS2 R229Q: a benign variant that is dominant over most pathogenic variants but recessive with others

For genetic counseling we need to know which variants are pathogenic in trans with R229Q

- 1. The variant affects an evolutionary conserved amino acid,
- 2. located in the region of oligomerization (residues 270–351)
- 3. The substitution results in change of size, polarity, or hydrogen bonding capacity, but
- 4. does not disrupt the oligomerization!

Incomplete penetrance and oligogenism in nephropathies

How many families have you ever seen with an incompletely penetrant genetic nephropathy?

• 0

1-5

• 6-10

• >10

PLCE1-associated nephrotic syndrome is incompletely penetrant

,Autosomal recessive' diseases with *homozygous loss-of-function mutations* may be incompletely penetrant

Gilbert et al, Kidney Int, 2009

c.1303_1306delAGGA, hom, p.R434*

Boyer et al, J Med Genet, 2010 c.6448C>T, hom, p.R2150*

Digenic inheritance in Alport syndrome

Mencarelli et al, J Med Genet, 2014

Digenic inheritance in Bartter IVb

Biallelic loss-of-function mutations in both the CLCNKA and CLCNKB genes

Schlingmann et al, N Engl J Med, 2004

Extra-renal involvement associated to NPHP1 may be the consequence of second-locus variants

Ahi1+/-

Nphp1+

ONL thickness

Nphp1-

'Triallelic inheritance' in Bardet-Biedl syndrome

Ciliopathies are nevertheless mendelian disorders

	Ciliopathy group	Control	р
Shaheen et al, Genome Biol, 2016	n = 31	n = 64	
additional variants in second ciliopathy genes (n=98) with a MAF<1%	7.0 / sample	6.98 / sample	0.91
MAF<1% + CADD > 20	1.13 / sample	1.19 / sample	0.68
	JBTS group	control	
Phelps et al, Genet Med, 2018	n = 386	n = 1082	
single heterozygous rare deleterious variants (MAF < 0.2% + CADD > 15) in at least two JBTS genes	19 (4.9%)	53 (4.9%)	0.99

No difference in the mutational load between patients with ciliopathy and healthy individuals.

Reasons potentially explaining the oligogenism theories in ciliopathies

- There is a wide variation in expressivity
- During the 1st decade of this century, it was challenging to assess the pathogenicity of rare variants: many were falsely considered pathogenic
- Ciliopathies are genetically highly heterogeneous: the higher the number of the causal genes, the more frequent are heterozygous carriers in the general population

Identification of incompletely penetrant (non-mendelian) variants in AR disorders

Calculation of the penetrance in AR disorders

Pathogenic CFTR alleles in the European general

and in the patient population

allele count in populations

	general	patient	penetrance
R117H	311	89	20.7%
LOF	353	481	p=9.07E-34

$$P \simeq \frac{AC_{pt}^{v}/AC_{pt}^{LOF}}{AC_{gnomAD}^{v}/AC_{gnomAD}^{LOF}}$$

Mikó et al, Hum Mutat, 2021

Incompletely penetrant variants can be identified by a population-genetic approach

Identification of incompletely penetrant variants and interallelic interactions in autosomal recessive disorders by a population-genetic approach

Mikó et al, Hum Mutat, 2021

IP variants in NPHS2 and PKHD1

gene vari		AF in E	LOF _{pt} / LOF _{gnomAD}		enrichment pt	penetrance	
	variant	patient population	gnomAD	(AC in Europe)	vs. gen pop (p)	(p)	Origin
NPHS2	c.686G>A R229Q	81/434 (18.66%)	4537/126346 (3.59%)	72/67	5.2x (1.16x10 ⁻³³)	1.66% (1.37x10 ⁻⁷⁶)	USA, AUS, CZE, FRA, ENG, DEU, TUR, GRC, HUN, ITA, POL, PRT, SVN, ESP
	c.4870C>T R1624W	5/580 (0.86%)	28/126656 (0.02%)	220/209	39x (4.13x10 ⁻⁷)	16.96% (4.39x10 ⁻⁰⁵)	FRA, NLD, USA
DVIID1	c.5498C>T S1833L	2/580 (0.34%)	37/126386 (0.003%)		11.78x (0.0138)	5.14% (3.15x10 ⁻⁹)	ESP, USA
PKHD1	c.6992T>A I2331K	8/580 (1.38%)	47/126480 (0.04%)		37.12x (1.81x10 ⁻¹⁰)	16.17% (1.05x10 ⁻⁷)	DNK, DEU, USA
	c.7264T>G C2422G	3/580 (0.52%)	78/126580 (0.06%)		8.39x (0.00619)	3.65% (2.43x10 ⁻¹⁸)	AUT, DEU

For the proper description of the transmission: the phenotype, the gene and the variant are all needed

- The *NPHS2* p.R138Q-related nephrotic syncrome is AR.
- The NPHS2 p.L330Vfs*15-related FSGS is AD.
- The PKD1 p.Q2158*-related polycystic kidney disease is AD.
- The PKD1 p.R220W-related polycystic kidney disease is AR.
- The PKHD1 p.T36M-related polycystic kidney disease is AR.
- The PKHD1 p.I2331K-related polycystic kidney disease is incompletely penetrant.
- The NPHP1 homozygous deletion-related NPH is AR.
- The NPHP1 homozygous deletion-related retinitis pigmentosa is multifactorial.

A multifactorial nephropathy

End-stage renal disease is 2-3x more frequent in the African American population than in the others

/million persons

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

UNITED STATES RENAL DATA SYSTEM

APOL1 G1 and G2 alleles: protection and risk

	African American FSGS, n=205	African American control n=180	р	African general pop n=5181	European general pop n=33307
G1 (S342G and I384M)	52%	23%	1.07×10^{-23}	23%	0,01%
G2 (N388_Y389del)	23%	15%	4.38 × 10 ⁻⁷	14%	0,006%

	wt/wt	G1/G2 + wt	G1/G2 + G1/G2
Trypanosoma b. brucei			
Trypanosoma b. rhodesiense	5		
Trypanosoma b. gambiense	50	5	Sp
hypertensive nephropathy	1	1.26x (95% CI: 1.01-1.56)	7.3x (95% CI: 5.6 to 9.5)
FSGS	1	NS	10x (95% CI:6-18.4) 17x (95% CI: 11 to 26) 4% lifetime risk
HIV-associated nephropathy	1	NS	29x (95% CI: 13 to 68) 50% risk if untreated

Genovese et al. Science 2010;329:841-845, Kipp et al. J Am Soc Nephrol 2011;22:2129-37

Conclusions

- Nephropathies are typically either mendelian or multifactorial.
- Oligogenic inheritance is rare, but variants at second loci may modify the phenotype.
- It seems worth describing the transmission pattern in function of the causal variant and the organ involvement.
- Incompletely penetrant variants can be detected by a populationgenetic approach in AR disorders and are more frequent than expected.

NEXT WEBINARS

05/04/22

<u>Fabry disease</u>
Olivier Lidove & Wladimir Mauhin (Paris, France)

19/04/22

<u>Methylmalonic acidemia</u> **Anais Brassier & Manuel Schiff (Paris, France)**

03/05/22

<u>Collagenopathies</u> Roser Torra (Barcelona, Spain)

Subscribe our Newsletter
Or follow us on Twitter
@EuRefNetwork

