

WEBINAR 14/06/22

ERKNet/ESPN Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

When to perform genetic testing in CAKUT (and what to test)?

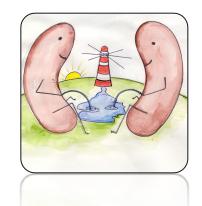
Speaker: Nine Knoers (Groningen, Netherlands)

Moderator: Max Liebau (Cologne, Germany)

european society fo

ephrology

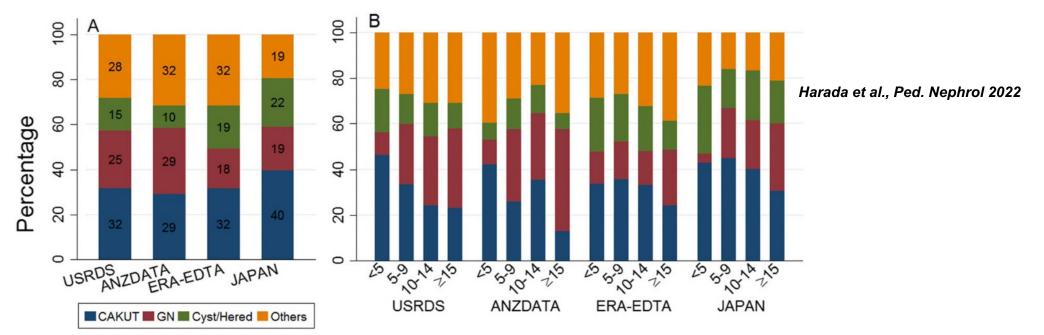
Presenter has no financial or other conflicts of interest to report


University Medical Center Groningen

university of groningen

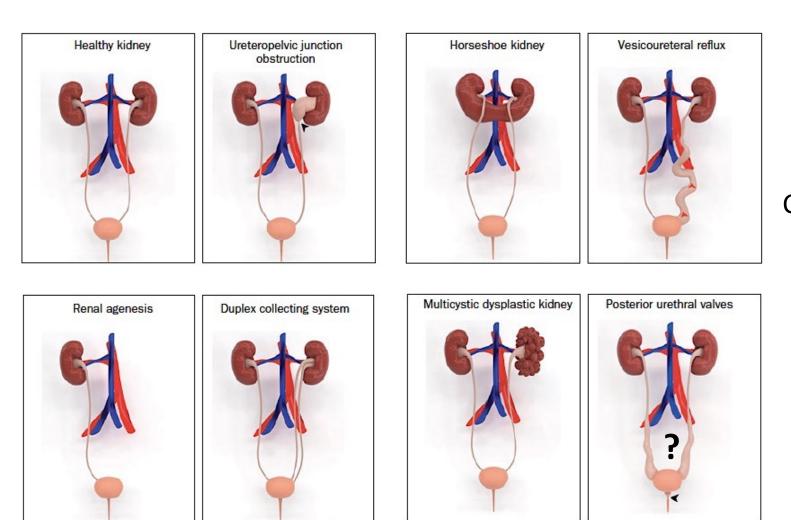
Outline

- Epidemiology CAKUT
- Disturbed nephrogenesis
- Etiology CAKUT: genetic, epigenetic and environmental factors
- Current molecular diagnostic tools for CAKUT
- When to perform genetic testing and what to test?
- Take home messages

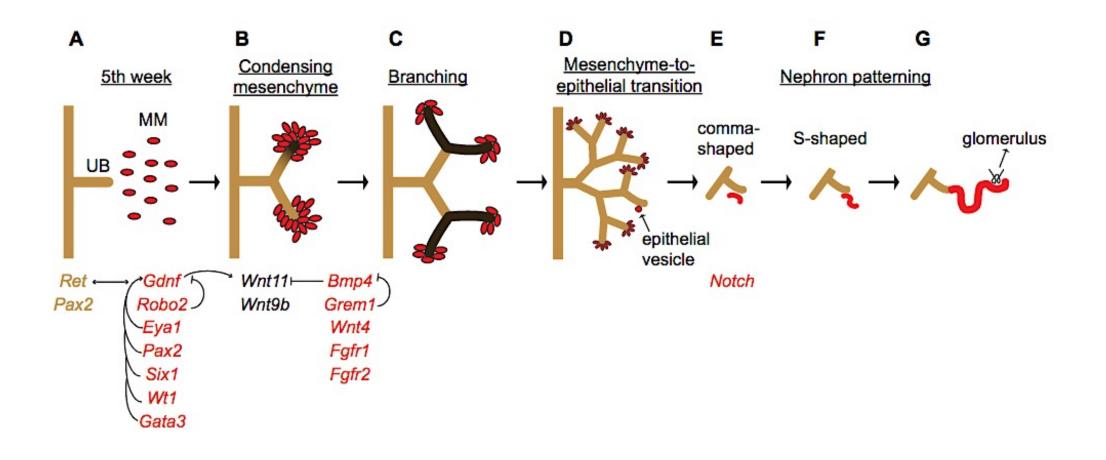

Poll question

My background knowledge on the genetics of kidney diseases in general, and CAKUT in particular is:

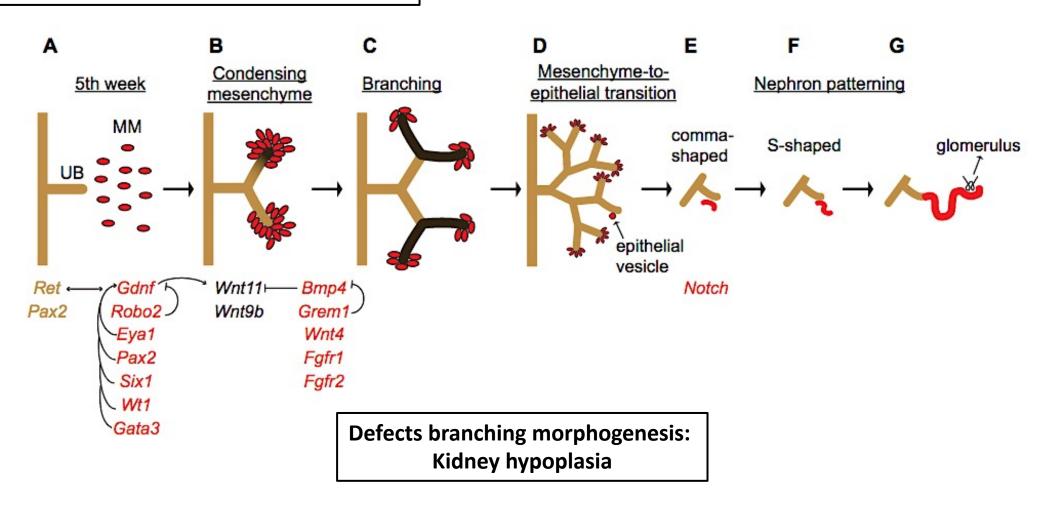
- 1. Low
- 2. Moderate
- 3. High
- 4. I am an expert


Congenital anomalies of the kidney and urinary tract (CAKUT): Epidemiology

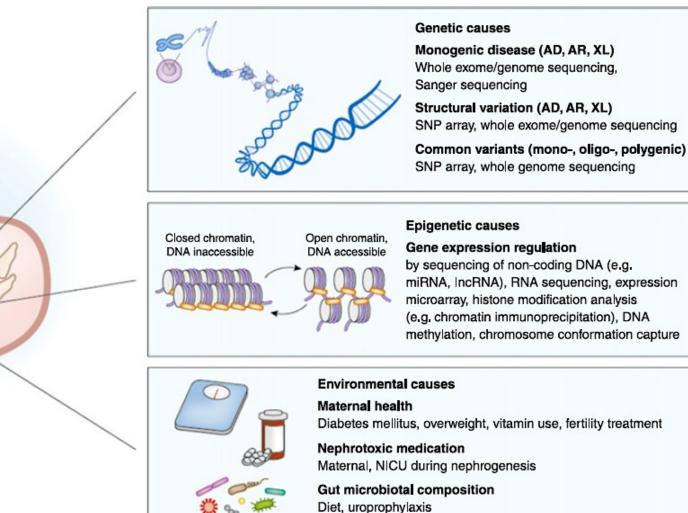
- ~ 20% of prenatally detected anomalies
- 1:100-500 live births
- Most frequent developmental disorder in humans
- Leading cause (30-40%) kidney failure in children; accounts for underestimated proportion of CKD of unknown origin in adults


Levi, Ultrasound Obstet Gynecol 2003; Sanna- Cherchi et al., KI 2009, Wühl et al., CJASN 2013, Harambat et al., Ped Nephrol 2016

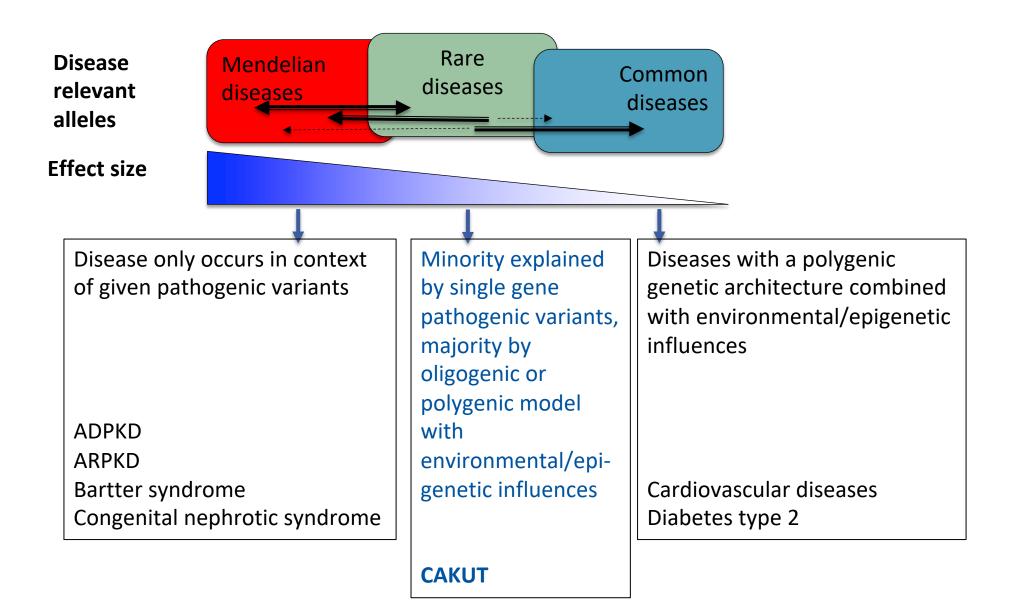
Congenital anomalies of the kidney and urinary tract (CAKUT): spectrum of structural malformations


Co-occurrence different anomalies within same individual

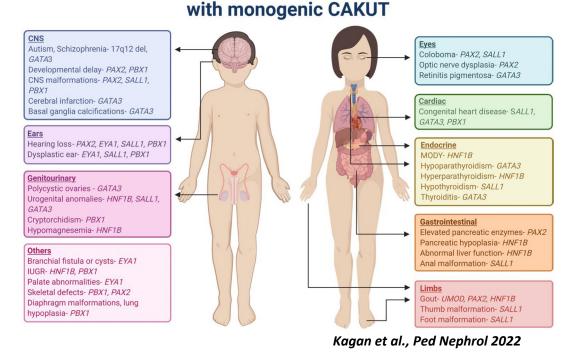
CAKUT have in common: disturbed embryonic kidney and UT development


CAKUT have in common: disturbed embryonic kidney and UT development

Defects UB outgrowth: kidney agenesis Ectopic UB outgrowth: duplex collecting system


CAKUT etiology

Hypothesis: Genes essential for kidney development are subject to environmental, epigenetic, and genetic modifications, which disrupt their regulation and result in increased susceptibility to CAKUT


(e.g. chromatin immunoprecipitation), DNA methylation, chromosome conformation capture

CAKUT: monogenic towards complex etiology

Genetic causes: Monogenic CAKUT

- Only minority (10-15%) CAKUT cases explained by single gene pathogenic variants
 - Autosomal dominant
 - Autosomal recessive
 - X-linked
 - de-novo (high frequency)
- Sometimes part of **multi-organ syndrome**:
 - Renal coloboma syndrome (PAX2)
 - Branchio-oto-renal syndrome (EYA1, SIX1)
 - Fraser syndrome (FRAS1, FREM1, FREM2, GRIP1)

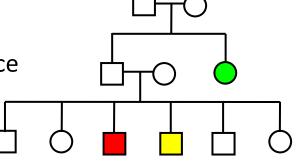
Main extra-renal manifestations associated

 ~ 5% of CAKUT cases explained by pathogenic copy number variants (CNVs): both in syndromic and non-syndromic cases

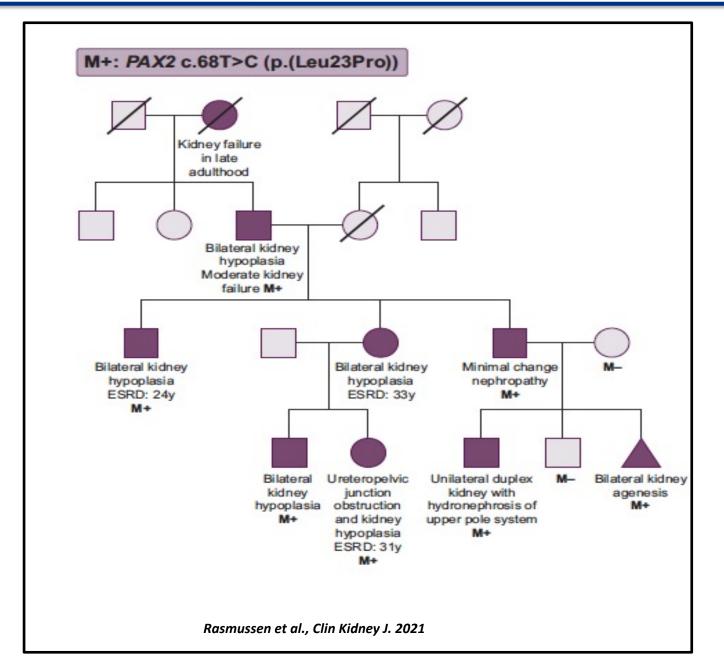
Genetic causes: Monogenic CAKUT

- Genetically very heterogenous: >50 genes involved
 - PAX2, HNF1B, EYA1 most frequently involved
 - Full list involved genes and associated phenotypes in *Knoers et al., NDT 2021*
 - Regularly involvement of novel genes detected: bi-allelic pathogenic variants *ROBO1* in syndromic CAKUT (eye, heart, central nervous system, gonad, kidney) *Munch et al., KI 2022*

• Variable expressivity


able 2 Single genes that have een linked to CAKUT*	Gene symbol	Gene name	Inheritance
been miked to eARC I	ACE	Angiotensin I converting enzyme	AR
	AGT	Angiotensinogen	AR
	AGTR1	Angiotensin II receptor type 1	AR
	ANOS1**	Anosmin 1	XLR
	BMP4	Bone morphogenetic protein 4	AD
	BNC2	Basonuclin 2	AD
	CHD1L	Chromodomain helicase DNA binding protein 1 like	AD
	CHRM3	Cholinergic receptor muscarinic 3	AR
	CHRNA3	Cholinergic receptor nicotinic alpha 3 subunit	AR
	COL4A1	Collagen type IV alpha 1 chain	AD
	CRKL	CRK like proto-oncogene, adaptor protein	AD
	DSTYK	Dual serine/threonine and tyrosine protein kinase	AD
	EYA1	EYA transcriptional coactivator and phosphatase 1	AD
	FGF20	Fibroblast growth factor 20	AR
	FOXC1	Forkhead box C1	AD
	FRAS1**	Fraser extracellular matrix complex subunit 1	AR
	FREM1**	FRAS1 related extracellular matrix 1	AR
	FREM2**	FRAS1 related extracellular matrix 2	AR
	GATA3	GATA binding protein 3	AD
	GFRA1	GDNF family receptor alpha 1	AR
	GREB1L	GREB1 like retinoic acid receptor coactivator	AD
	GREM1**	Gremlin 1, DAN family BMP antagonist	AR
	GRIP1**	Glutamate receptor interacting protein 1	AR
	HNF1B	HNF1 homeobox B	AD
	HPSE2	Heparanase 2 (inactive)	AR
	ITGA8**	Integrin subunit alpha 8	AR
	LIFR	Leukemia inhibitory factor receptor	AD
	LRIG2	Leucine-rich repeats and immunoglobulin-like domains 2	AR
	MYH11	Myosin heavy chain 11	AR
	NRIP1	Nuclear receptor interacting protein 1	AD
	PAX2	Paired box 2	AD
	PBX1	PBX homeobox 1	AD
	RET	Ret proto-oncogene	AD
	ROBO2	Roundabout guidance receptor 2	AD
	SALLI	Spalt-like transcription factor 1	AD
	SIX 1	SIX homeobox 1	AD
	SIX2	SIX homeobox 2	AD
	SIX5	SIX homeobox 5	AD
	SLIT2	Slit guidance ligand 2	AD
	SLIT3	Slit guidance ligand 3	AR
	SOX11	SRY-box transcription factor 11	AD
	SOX17	SRY-box transcription factor 17	AD
	SRGAP1	SLIT-ROBO Rho GTPase activating protein 1	AD
	TBC1D1	TBC1 domain family member 1	AD
	TBX18	T-box transcription factor 18	AD
	TNXB	Tenascin XB	AD
	TRAP1**	TNF receptor associated protein 1	AR
	UPK3A	Uroplakin 3A	AD
	WNT4	Wnt family member 4	AD
agan et al.,	WNT9B	Whit family member 4 Whit family member 9B	AR
ed. Nephrol 2022	ZMYM2 **	Zinc finger MYM-type containing 2	AD

Variable expressivity


In individuals carrying pathogenic variants in same gene or even same pathogenic variant

- > Intra-individual variability: co-occurrence of different anomalies within same individual
 - Meta-analyses: ~ 1 in 3 cases with unilateral kidney agenesis or multicystic dysplastic kidneys have VUR or ureteropelvic junction obstruction on contralateral side (*Schreuder et al., 2009; Westland et al., NDT 2013*)
 - Discordant phenotypes in monozygotic twins (*latropoulos et al., Ped. Nephrol. 2012; Jin et al., AJKD 2014*)
- Inter-individual variability: identical pathogenic variation can result in different CAKUT phenotypes and in variable severity, with/without extrarenal features, even within same family

- Variable phenotypes
- Incomplete penetrance

Example variable expressivity

Copy number variants (CNVs) in syndromic and isolated CAKUT

CNVs: Structural variations in genome of individual in form of gains (duplications) or losses (deletions) of DNA fragments

Genome-wide analysis of CNVs in **~3000 CAKUT patients** and >21,000 population-based controls

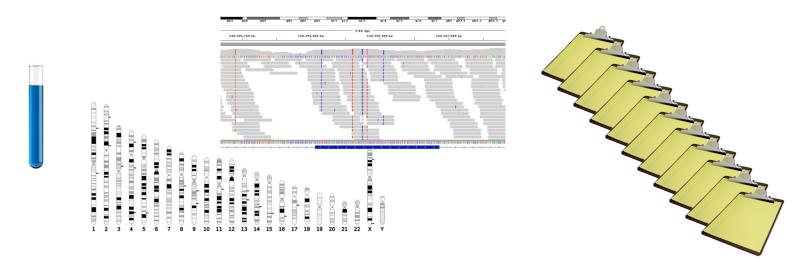
Full phenotypic CAKUT spectrum

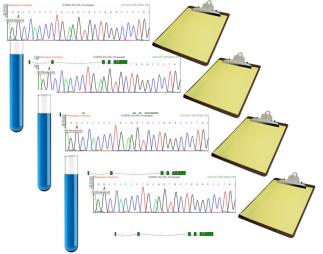
Increased burden of large, rare, exonic CNVs in CAKUT:

Remained after excluding syndromal cases
 Patients with kidney anomalies mostly exonic deletions
 Patients with VUR or PUV mostly exonic duplications

Copy number variants (CNVs) in syndromic and isolated CAKUT

6 loci account for most CAKUT cases caused by CNVs


Locus	CNV type	Renal pheno- type driver gene	Associated syndromes/main extra-renal manifestations
1q21	Deletion/duplication	N/A	Neurodevelopmental disorders, cardiac malformations, skeletal malformations, endocrine abnormalities, cataracts, and GI abnormalities
4p16.1-p16.3	Deletion	N/A	Wolf–Hirschhorn syndrome
16p11.2	Deletion/duplication	TBX6	ASD, obesity, CHD, vertebral anomalies, macrocephaly, and hearing impair- ment
16p13.11	Deletion/duplication	N/A	Neurodevelopmental disorders, cardiac malformations, CNS malformations, skeletal malformations, and dysmorphic features
17q12	Deletion/duplication	HNF1B	<i>HNF1B</i> -associated syndrome, neurodevelopmental and neuropsychiatric disorders
22q11.2	Deletion/duplication	CRKL	DiGeorge/velocarodiofacial syndrome


Adapted from Kagan et al., Ped Nephrol 2022

Massively Parallel Sequencing (MPS) changed paradigm clinical genetic testing

From one test per gene to one test for all (involved) genes

- Disease-specific multigene panels
- Whole Exome sequencing (WES: all genes)
- Whole Genome sequencing (WGS: complete DNA)

Rapid and cost-effective sequencing of large amounts of DNA

Current molecular diagnostic tools for CAKUT

Massively Parallel Sequencing (MPS)-based tests for identification single gene mutations

Targeted phenotype-associated gene panel

Simultaneous sequencing of specific preselected set of genes relevant to CAKUT **Advantage**: will not yield incidental findings in genes unrelated to primary indication for testing **Disadvantage**: updating with newly discovered relevant genes requires redesign and validation of assay

Targeted Exome Sequencing (virtual gene panel)

Exome (21.000 genes) sequenced, only CAKUT-relevant genes analysed and interpreted by using in silico bioinformatics tools

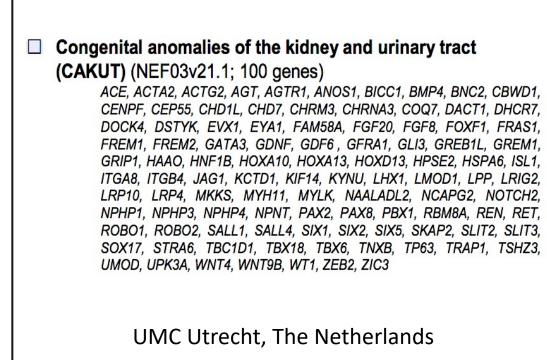
Advantages:

- 1. dynamic gene content update with minimal design and validation
- 2. possibility to 'open up' exome backbone data and look beyond known genes (with increased chance of incidental findings)

Genome sequencing

Currently used infrequently in diagnostic testing but expected to replace all other genome diagnostic methods within few years

Current molecular diagnostic tools for CAKUT

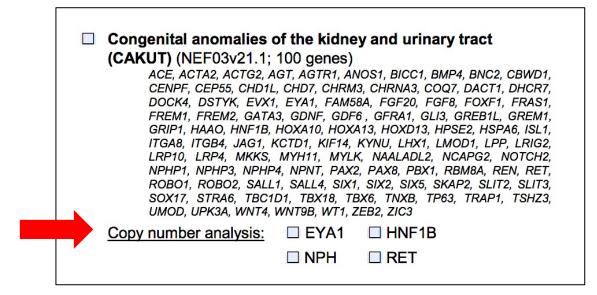

Massively Parallel Sequencing (MPS)-based tests for identification single gene mutations

Targeted Exome Sequencing (virtual gene panel)

Exome (21.000 genes) sequenced, only CAKUT-relevant genes analysed and interpreted by using in silico bioinformatics tools

Advantages:

- 1. dynamic gene content update with minimal design and validation
- 2. possibility to 'open up' exome backbone data and look beyond known genes (with increased chance of incidental findings)


CNV detection in diagnostics

CNVs Involved in CAKUT not easily picked up by MPS-based gene panels or exome sequencing

- Sophisticated bioinformatic tools necessary to detect those large CNVs from gene panel or ES data
- Not yet routinely used in all diagnostic laboratories

Preferred methodologies for routine diagnostics of large CNVs in many labs:

- Microarray-based technique (CGH- or SNP-arrays)
- Multiplex ligation-dependent probe amplification (MLPA)

Poll question

I order genetic tests for my CAKUT patients:

- 1. Every week
- 2. Once or twice every month
- 3. Few times per year
- 4. Never
- I would like to order genetic tests but have no access to an accredited lab

Implementation of genomic diagnostics in daily practice for CAKUT patients

Possible reasons for slow implementation

- Doubts about diagnostic value
- Risk identifying variants of unknown significance (VUS)
- Risk identifying medically actionable incidental findings
- Financial issues and logistic impracticalities
- Nephrologists unaccustomed to using genetic tests as diagnostic and prognostic clinical modalities

Poll question

Genetic testing for CAKUT in my view is:

- 1. Useful to confirm the diagnosis
- 2. Useful in management of the patient
- 3. Useful for orientation on extra-renal manifestations
- 4. 1,2, and 3
- 5. Not useful

Implementation of genomic diagnostics in daily practice for CAKUT patients

Opportunities/predicted clinical benefit

- Genetics-first approach could prevent invasive diagnostic procedures
- Genetic testing can give exact diagnosis important for management (i.e. strict BP control in children with kidney hypo-dysplasia)
- Molecular diagnosis helpful for orientation on extra-renal manifestation and specific follow-up
 - *HNF1B* mutation: monitoring diabetes
 - PAX2 mutation: ocular defect (risk retinal detachment)
- Molecular diagnosis useful in light of living related kidney transplantation
- Molecular diagnosis useful for genetic counseling, family planning

Diagnostic yield targeted sequencing screens

Range from 0 to 20%, heavily depended on (1) cohort characteristics: CAKUT phenotype, inclusion criteria, population of cases and controls, (2) genes included in screens, (3) analysis large CNVs?

453 unrelated Caucasian patients, P and A

- Mainly sporadic cases
- Full phenotypic spectrum of CAKUT

208 genes (known and candidate genes) Large CNV analysis: only for *HNF1B* by MLPA Yield 3% mainly *PAX2, HNF1B, SIX5,*

Nicolaou et al., KI 2015

94 unrelated Korean pediatric patients

Only severe CAKUT, 62 patients extrarenal features

Targeted exome analysis (60 genes), including analysis large CNVs **Yield 13.8%,** much higher in syndromic than in isolated CAKUT (34.4% vs. 3.2%) Mainly *HNF1B, PAX2, EYA1*

Ahn et al., J Clin Med 2020

Diagnostic yield targeted sequencing screens

Range from 0 to 20%, heavily depended on (1) cohort characteristics: CAKUT phenotype, inclusion criteria, population of cases and controls, (2) genes included in screens, (3) analysis large CNVs?

 453 unrelated Caucasian patients, P and A Mainly sporadic cases Full phenotypic spectrum of CAKUT 	
208 genes (known and candidate genes) Large CNV analysis: only for <i>HNF1B</i> by MLPA Yield 1,3% Mainly PAX2, HNF1B, SIX5, Nicolaou et al., KI 2015	 69 Indian pediatric patients History of consanguinity in 22% Full phenotypic spectrum CAKUT, majority VUR and PUV 31 known CAKUT genes No analysis large CNVs Yield 0% Only Variants of unknown significance (VUS)
 94 unrelated Korean pediatric patients Only severe CAKUT, 62 patients extrarenal features 	
Targeted exome analysis (60 genes), including analysis large CNVs Yield 13.8%, much higher in syndromic than in isolated CAKUT (34.4% vs. 3.2%) Mainly <i>HNF1B, PAX2, EYA1</i>	Narikot et al., BMC Nephrology 2022
Ahn et al., J Clin Med 2020	

Diagnostic yield targeted sequencing screens

Range from 0 to 20%, heavily depended on (1) cohort characteristics: CAKUT phenotype, inclusion criteria, population of cases and controls, (2) genes included in screens, (3) analysis large CNVs?

453 unrelated patients

- Mainly sporadic cases
- Full phenotypic spectrum of CAKUT

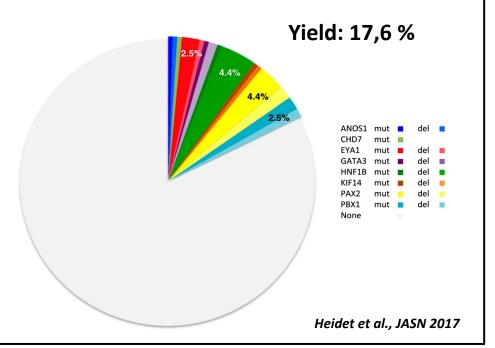
208 genes (known and candidate genes) Large CNV analysis: only for *HNF1B* by MLPA Yield 1,3% mainly *PAX2, HNF1B, SIX5*

Nicolaou et al., KI 2015

94 unrelated Korean patients

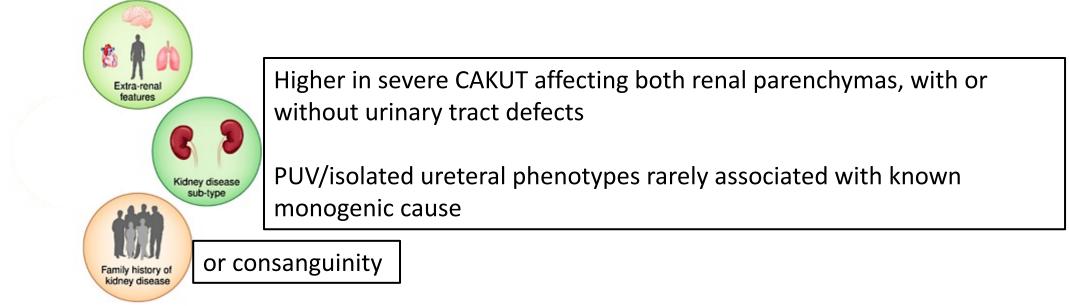
Only severe CAKUT, 62 patients extrarenal features

Targeted exome analysis (60 genes), including analysis large CNVs Yield 13.8%, much higher in syndromic than in


isolated CAKUT (34.4% vs. 3.2%)

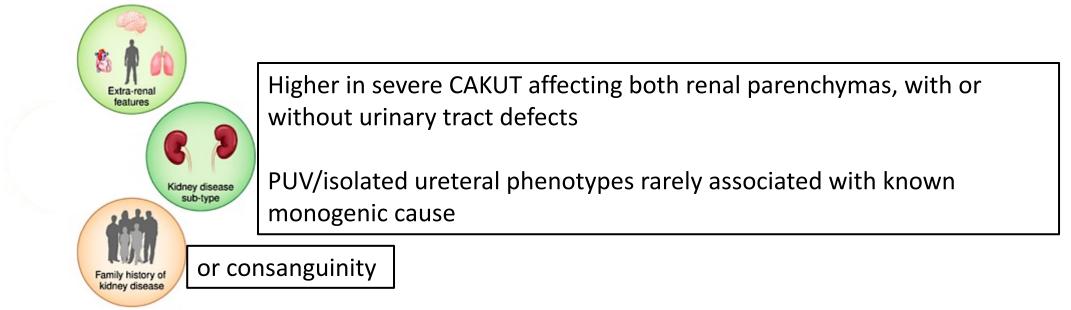
Mainly HNF1B, PAX2, EYA1

Ahn et al., J Clin Med 2020


204 unrelated patients

- Only cases with both kidneys affected and/or familial cases and/or syndromic forms, no PUV
- 45% severe fetal cases
- Targeted exome analysis (330 genes), including analysis large CNVs

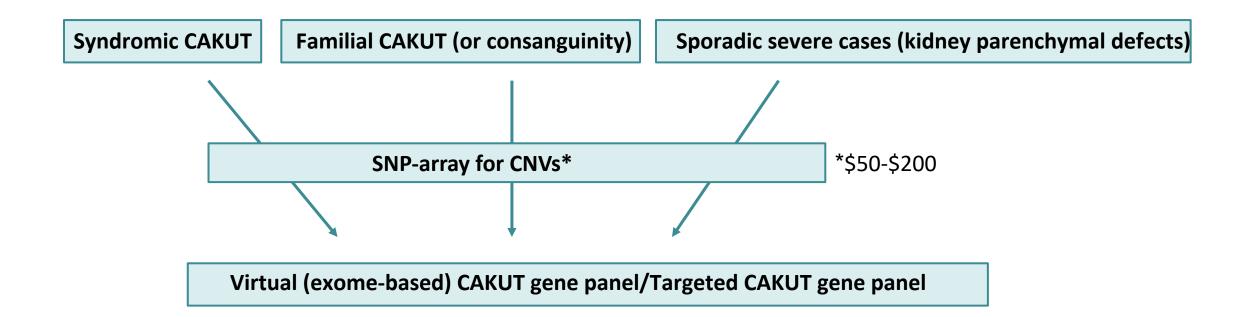
When to perform genetic testing and what to test?


Predictors high diagnostic yield

Adapted from Cocchi et al., CJASN 2020

When to perform genetic testing and what to test?

Predictors high diagnostic yield



Adapted from Cocchi et al., CJASN 2020

No one-size-fits all approach:

Consider:

- Potential diagnostic yield/ clinical clues for monogenic CAKUT
- Test's costs
- Payer's situation
- Ethical issues (Incidental findings)

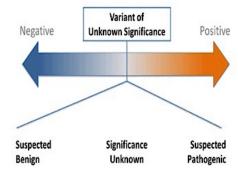
In case of PUV/isolated ureteral phenotypes: no standard genetic screening

All testing and molecular classification should be undertaken in accredited molecular genetics laboratories

Interpretation of test results preferably in multidisciplinary setting

American College of Medical Genetics and Genomics (ACMG) variant classification

Class	Description	
1	Clearly not pathogenic	
2	Unlikely to be pathogenic	
3	Unknown significance (VUS)	
4	Likely to be pathogenic	
5	Clearly pathogenic	


Most difficult outcome: class 3, variants of unknown significant (VUS)

Local hospital policies differ whether or not to disclose VUS to patients

ACMG recommendations:

- VUS should not be used in clinical decision-making
- Efforts to resolve classification (i.e. segregation analysis, functional studies, data sharing)

Pathogenicity identified variants?

Pathogenicity of some variants previously reported as pathogenic mutations questionable with available knowledge of large databases (i.e. gnomAD)

Difficult to definitely rule out causality of some variants, as expressivity and penetrance can vary greatly in monogenic CAKUT with autosomal dominant inheritance

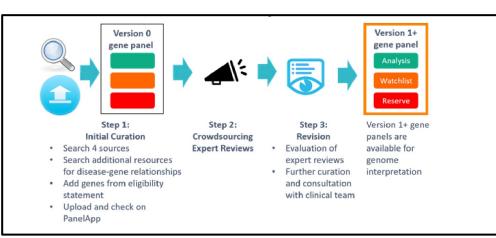
Consult updated clinical variant databases:

- **ClinVar** https://www.ncbi.nlm.nih.gov/clinvar/
- LOVD https://www.lovd.nl

Curation of data:

- ClinGen (https://clinicalgenome.org): specific clinical domain groups/expert panels helpful in defining clinical relevance identified genes/variants for various forms of genetic kidney diseases No specific WG for CAKUT yet
- Genomics England PanelApp/PanelApp Australia: Crowdsourcing tools to allow gene panels to be shared, downloaded, viewed, and evaluated by Scientific Community. Both have panels for CAKUT

Genomics England PanelApp



STOP: not enough evidence for this gene-disease; this gene should not be used for genome interpretation.

PAUSE: moderate evidence for this gene-disease association, and should not yet be used for genome interpretation.

GO: high level of evidence for this gene-disease association, demonstrates confidence that this gene should be used for genome interpretation.

- Reviewers are asked to rate genes according to this traffic light system.
- Green genes on Version 1+ panels will reflect this evidence system and can be used for genome interpretation.

Date	Panel	Item	Activity
Filter activiti	es		375 actions
11 Jun 2022	CAKUT v1.168	TMEM260	Eleanor Williams Classified gene: TMEM260 as Green List (high evidence)
11 Jun 2022	CAKUT v1.168	TMEM260	Eleanor Williams Gene: tmem260 has been classified as Green List (High Evidence).
11 Jun 2022	CAKUT v1.167	TMEM260	Eleanor Williams Tag Q4_21_rating was removed from gene: TMEM260.
11 Jun 2022	CAKUT v1.167	TMEM260	Eleanor Williams commented on gene: TMEM260
10 Jun 2022	CAKUT v1.167	ROBO1	Laura Claus gene: ROBO1 was added gene: ROBO1 was added to CAKUT. Sources: Literature Mode of inheritance for gene: ROBO1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ROBO1 were set to 35227688 Phenotypes for gene: ROBO1 were set to unilateral kidney agenesis; bilateral kidney agenesis; vesicoureteral junction obstruction; vesicoureteral reflux; posterior urethral valve; genital malformation; increased kidney echogenicity Review for gene: ROBO1 was set to GREEN Added comment: Sources: Literature
08 May 2022	CAKUT v1.167	TRAP1	Eleanor Williams Tag gene-checked tag was added to gene: TRAP1.
07 May 2022	CAKUT v1.167	GREB1L	Eleanor Williams Tag gene-checked tag was added to gene: GREB1L.
16 Mar 2022	CAKUT v1.167	ISCA-37432- Loss	Arina Puzriakova commented on Region: ISCA-37432-Loss
16 Mar 2022	CAKUT v1.167	ISCA-37432- Loss	Arina Puzriakova GRCh38 position for ISCA-37432-Loss was changed from 36458167-37854617 to 36458167-37854616. Required Overlap Percentage for ISCA-37432-Loss was changed from 80 to 60.
01 Mar 2022	CAKUT v1.166	LIFR	Eleanor Williams Added comment: Comment on mode of inheritance: Mode of inheritance of MONOALLELIC is correct for the CAKUT phenotype.
01 Mar 2022	CAKUT v1.166	LIFR	Eleanor Williams Mode of inheritance for gene: LIFR was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
28 Oct 2021	CAKUT v1.165	TMEM260	Sarah Leigh edited their review of gene: TMEM260: Changed rating: AMBER
28 Oct 2021	CAKUT v1.165	TMEM260	Sarah Leigh changed review comment from: Associated with relevant phenotype in OMIM and as probable Gen2Phen gene. At least eight variants have been reported in at least six unrelated cases. The variants included: one multi-exon deletion resulting in a frameshift, two smaller frameshifting deletions, two nonsense, one splicing change and two missense changes, one of which was shown by cDNA sequencing t result in skipping of exon 3 (PMID 34612517).; to: Associated with relevant phenotype

For CAKUT: https://panelapp.genomicsengland.co.uk/panels/234/

Take Home Messages

- CAKUT assumed to have monogenic towards complex etiology, involving genetic factors, environmental and epigenetic factors
- Monogenic cause, including CNVs, in ~ 15% of patients
- Monogenic CAKUT is characterized by phenotypic variability and reduced penetrance
- CAKUT patients can benefit from genetic diagnostic testing, allowing personalized management and follow-up, appropriate genetic counseling
- Predictors of high diagnostic yield of genetic testing: syndromic CAKUT, familial CAKUT (consanguinity), and sporadic severe cases (kidney parenchymal defects)
- In those cases: genetic testing using MPS-based (virtual) gene panels is advised
 It may be cost effective to first start with SNP-microarray testing to detect pathogenic CNVs
- Standard genetic screening is currently not advised in cases of PUV/isolated ureteral phenotypes
- Be critical in judging pathogenicity of identified variants. This is best done in a multidisciplinary setting

Acknowledgements

Albertien van Eerde Kirsten Renkema Laura Claus Rozemarijn Snoek Marc Lilien Bert van der Zwaag

Lude Franke Patrick Deelen Martin de Borst Amber de Haan Floranne Boulogne Patrick Rump **ERKNet** The European Rare Kidney Disease Reference Network

Franz Schaefer, Heidelberg Laurence Heidet, Paris

Rick Westland, Amsterdam UMC

