

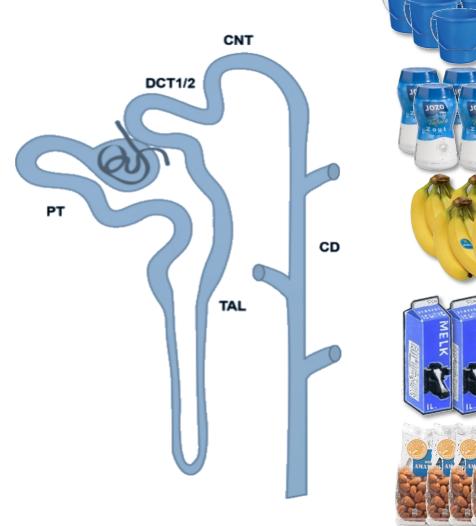
WEBINAR 28/06/22

Tom.Nijenhuis@Radboudumc.nl

Welcome to

ERKNet/ERA Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

<u>Gitelman syndrome</u> <u>Adult view</u>

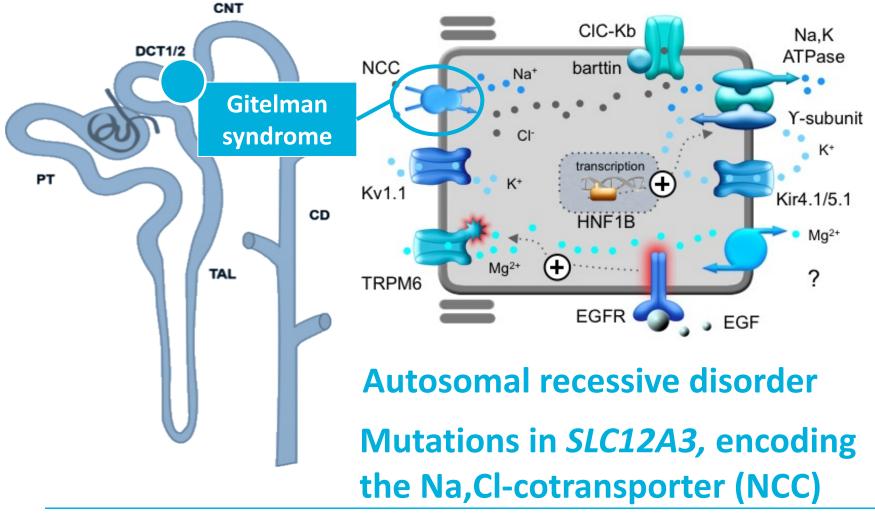

Speaker: Tom Nijenhuis (Nijmegen, Netherlands) Patient: Voice: Gitelman patient

Moderator: Elena Levtchenko (Leuven, Belgium)

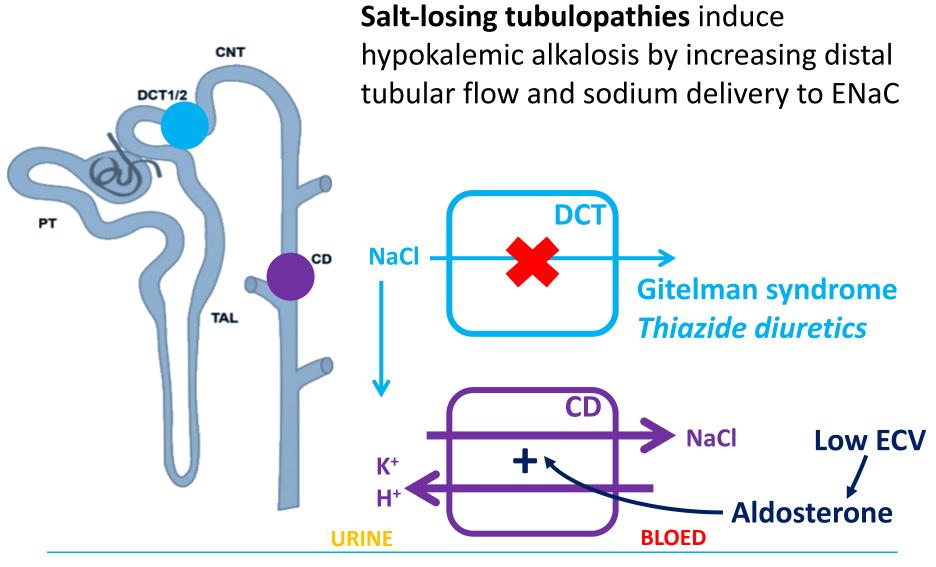
Without renal tubules, we would lose...

UF ~ 180 liter water per day

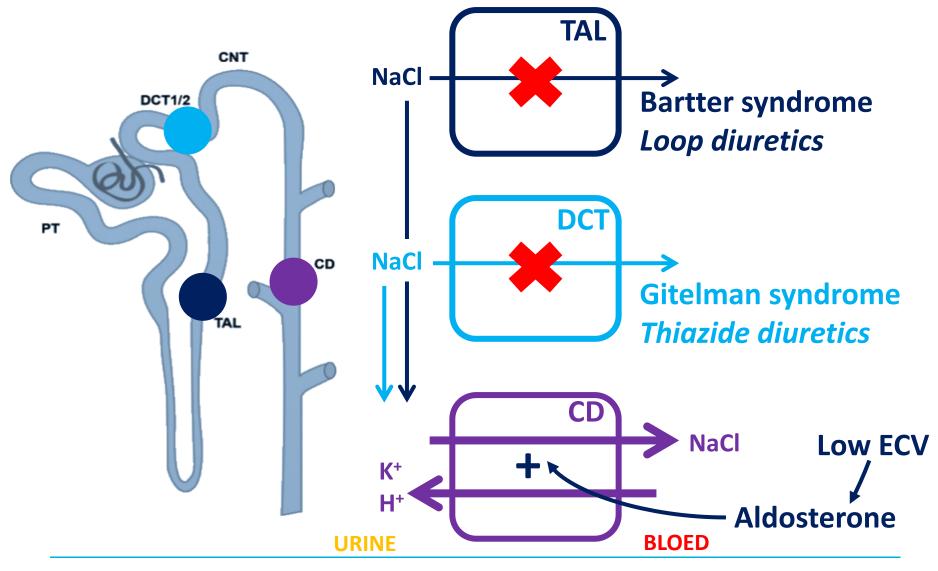
Na ~ 1.5 kg salt per day


K ~ 48 bananas per day

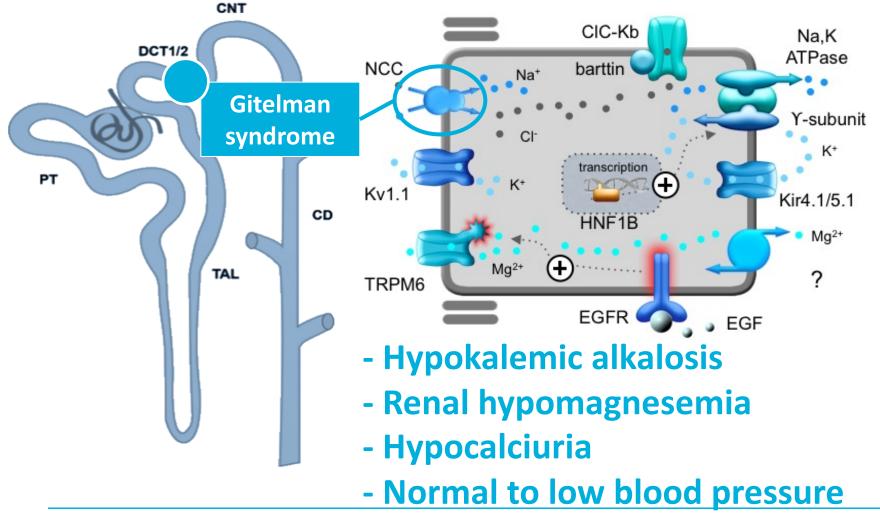
Ca ~ 7 liters milk per day


Mg ~ 2 kg almonds per day

Gitelman syndrome: salt-losing tubulopathy



Hypokalemic alkalotic salt-losing nephropathy



Hypokalemic alkalotic salt-losing nephropathy

Gitelman syndrome

Distal convoluted tubule (DCT)

Signs and symptoms in Gitelman syndrome

Table 1 | Clinical manifestations encountered in Gitelman syndrome patients

Most common (>50% of patients)	Prominent (20% to 50% of patients)	Occasional (<20%)	(cas	Rare se reports)
Salt craving	Fainting	Early onset	Seizu	ure
Cramps, muscle weakness	Polyuria Arthralgia	(before age 6) Failure to thrive		ricular chycardia
Fatigue	Chondrocalcinosis	Growth retardation	Rhab	odomyolysis
Dizziness	Prolonged	Pubertal delay	Blurr	ed vision
Nocturia	QT interval	Vertigo, ataxia	Pseu	dotumor
Thirst, polydipsia	Febrile episodes	Carpopedal	ce	rebri
Paresthesia,		spasm, tetany	Scler	ochoroidal
numbness		Vomiting	ca	
Palpitations		Constipation		
Low blood		Enuresis		Patier
pressure		Paralysis		ratici
Adapted, with perm	nission, from Devuyst	et al. ⁸³		voice

ui permission, nom D

Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference Blanchard et al. Kidney Int 2017

Patient's voice

Introduction

46 years old, diagnosed with Gitelman syndrome at 39

Childhood / Adolescence

Childhood

- Kindergarten: early symptoms linked to Gt
- Supplemented mineral(s)/regular blood check
- Elementary school: normal health, occasional light symptoms, no check-ups
- Did not use medication or supplements at that time

Adolescence

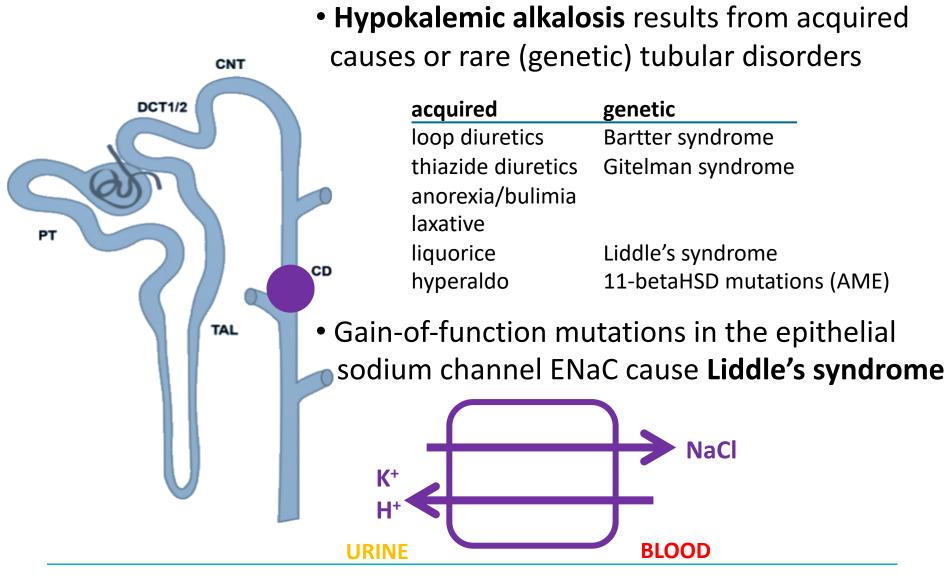
- Normal health, except for the occasional light symptoms, no check-ups
- Did not use medication or supplements at that time

Patient's voice

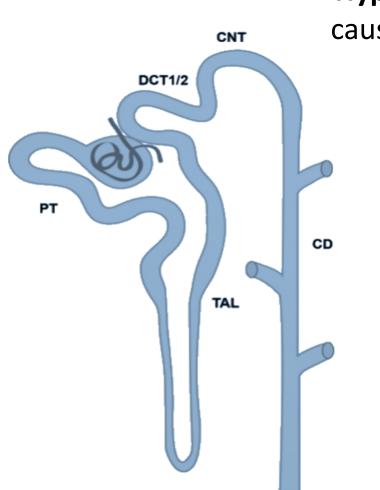
Adult age

- Early 30s, severe Gitelman Syndrome symptoms. Six months recuperation
- KCl and Mg supplementation
- Good health for 9 years. No major health symptoms related to Gt
 No regular check-ups
- 6,5 years ago: relapse. Diagnosis via DNA test/Dosage of KCl and Mg increased / Regular health check since then/Energy levels decreased/ Recuperation: 1 year

Challenges / Needs / Concerns


➤Ups-and-downs in physical health

>Emotional health: uncertainty, frustrations and anxiety, not trusting the body, fear, over compensation (work)


Patient's voice

- Acceptance, adaptation ,quality of life, work-life balance, social life, dealing with misunderstandings
- Increase awareness about Gt among healthcare professionals
- Personalized treatment
- Finding the suitable supplement/dosage, side effects
- Coverage healthcare insurance
- Availability of medication: production stop/delays
- Testing on mineral levels: cell vs. serum (costs, availability, etc.) /self-tests
- Long term effects of prolonged lower mineral level(s)? Other ways of prevention next to trying to maintain acceptable mineral levels?

Differential diagnosis of hypokalemic alkalosis

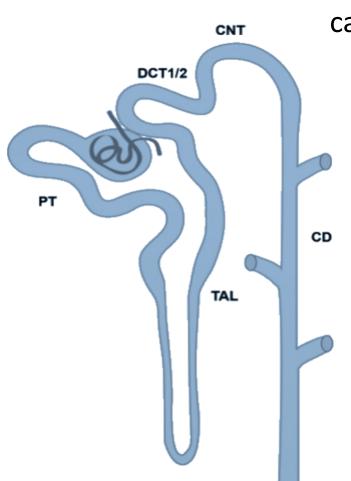
Differential diagnosis of hypokalemic alkalosis

• Hypokalemic alkalosis results from acquired causes or rare (genetic) tubular disorders

acquired	genetic
loop diuretics	Bartter syndrome
thiazide diuretics	Gitelman syndrome
anorexia/bulimia	
laxative	
liquorice	Liddle's syndrome
hyperaldo	11-betaHSD mutations (AME

Na and Cl excretion in hypokalemic alkalosis

- Renal loss -> high urine Na and Cl
- Anorexia/Bulimia: gastric juice contains more Cl than Na -> less Cl than Na in urine
- Laxatives: stool contains more K and Na than Cl -> less Na than Cl in urine
- Diuretics/salt-losing nephropathies: urine Na and Cl high and coupled (ratio~1)
- **Diuretics:** variably high and low urinary Na and Cl


Urine Na⁺/Cl⁻ ratio (mmol/mmol)

ureticoff

atative

reticon

Differential diagnosis of hypokalemic alkalosis

• Hypokalemic alkalosis results from acquired causes or rare (genetic) tubular disorders

acquired	genetic
loop diuretics	Bartter syndrome
thiazide diuretics	Gitelman syndrome
anorexia/bulimia laxative	
liquorice hyperaldo	Liddle's syndrome 11-betaHSD mutations (AME)

Diagnosing Gitelman syndrome

Table 2 Diagnostic criteria for Gitelman syndrome

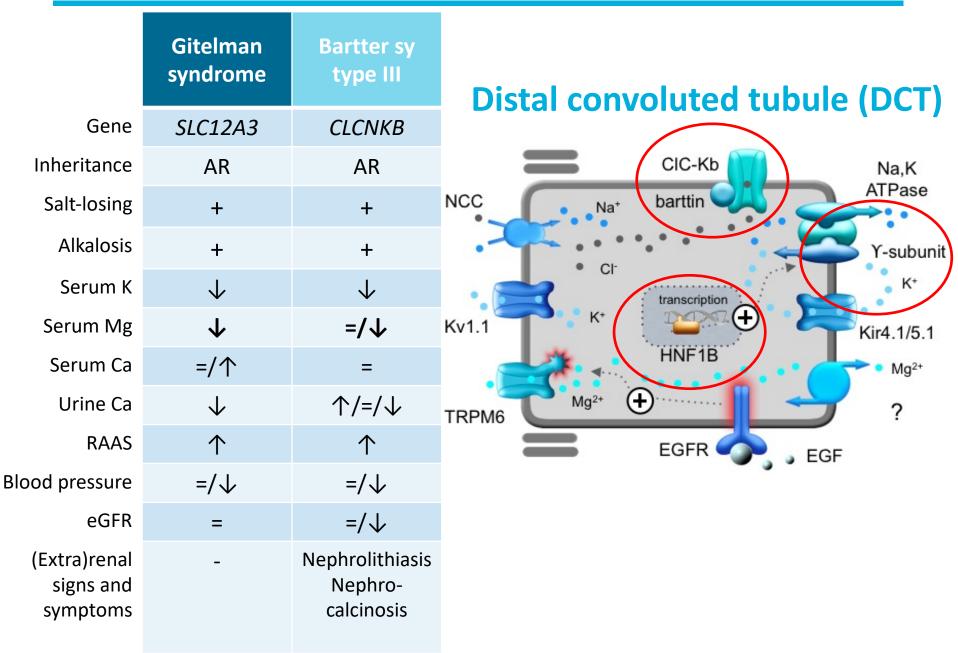
Criteria for suspecting a diagnosis of GS

- Chronic hypokalemia (<3.5 mmol/l) with inappropriate renal potassium wasting (spot potassium-creatinine ratio >2.0 mmol/ mmol [>18 mmol/g])
- Metabolic alkalosis
- Hypomagnesemia (<0.7 mmol/l [<1.70 mg/dl]) with inappropriate renal magnesium wasting (fractional excretion of magnesium >4%)
- Hypocalciuria (spot calcium-creatinine ratio <0.2 mmol/mmol [<0.07 mg/mg]) in adults.^a
- High plasma renin activity or levels
- Fractional excretion of chloride > 0.5%^b
- Low or normal-low blood pressure
- Normal renal ultrasound

Criteria for establishing a diagnosis of GS

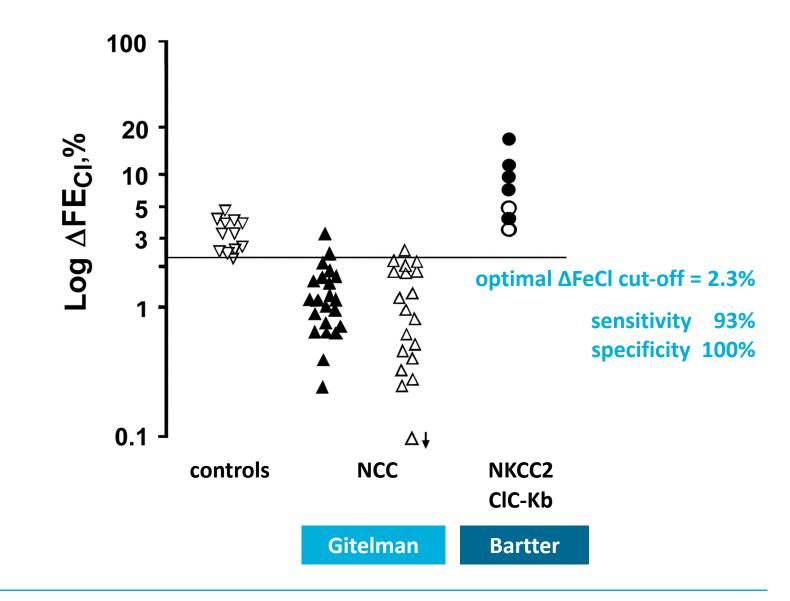
Identification of biallelic inactivating mutations in SLC12A3

Diagnosing Gitelman syndrome

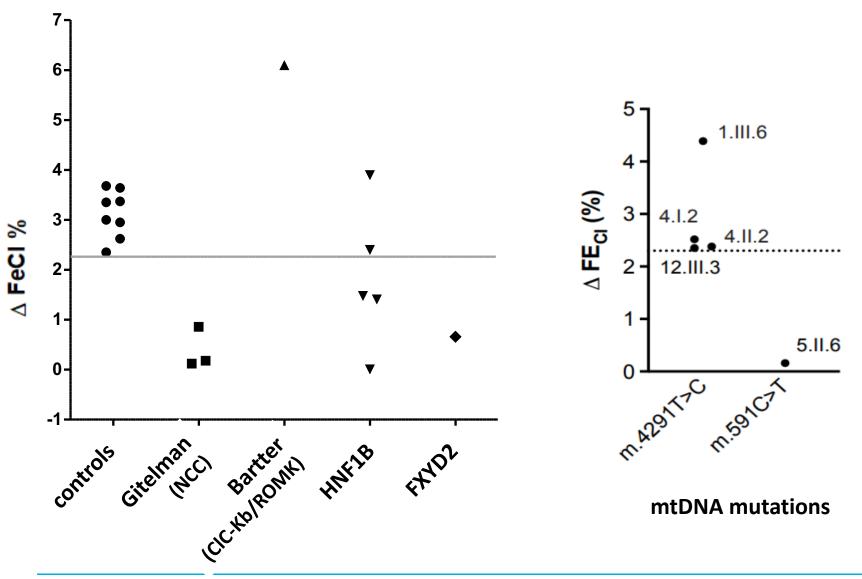

Table 2 Diagnostic criteria for Gitelman syndrome

Features against a diagnosis of GS

- Use of thiazide diuretics or laxatives
- Family history of kidney disease transmitted in an autosomal dominant mode
- Absence of hypokalemia (unless renal failure); inconsistent hypokalemia in absence of substitutive therapy
- Absence of metabolic alkalosis (unless coexisting bicarbonate loss or acid gain)
- Low renin values
- Urine: low urinary potassium excretion (spot potassium-creatinine ratio <2.0 mmol/mmol [<18 mmol/g]); hypercalciuria
- Hypertension,^c manifestations of increased extracellular fluid volume
- Renal ultrasound: nephrocalcinosis, nephrolithiasis, unilateral kidneys, cystic kidneys
- Prenatal history of polyhydramnios, hyperechogenic kidneys
- Presentation before age 3 years^c


	Gitelman syndrome
Gene	SLC12A3
Inheritance	AR
Salt-losing	+
Alkalosis	+
Serum K	\checkmark
Serum Mg	\checkmark
Serum Ca	=/个
Urine Ca	\checkmark
RAAS	\uparrow
Blood pressure	=/↓
eGFR	=
(Extra)renal signs and symptoms	-

	Gitelman	Bartter sy	"Bartter-like syndromes"			
	syndrome	type III	Set of inherited tubular disorders with			
Gene	SLC12A3	CLCNKB	hypokalemic metabolic alkalosis			
Inheritance	AR	AR				
Salt-losing	+	+	antenatal classic Gitelman syndrome Bartter syndrome			
Alkalosis	+	+	NKCC2 CIC-Kb NCC KCNJ1			
Serum K	\checkmark	\checkmark				
Serum Mg	\checkmark	=/↓	claudin 16-19			
Serum Ca	=/个	=	NA,K NKCC2 NKCC2 Na,K			
Urine Ca	\checkmark	^/=/↓				
RAAS	\uparrow	\uparrow	к — Y-subunit			
Blood pressure	=/↓	=/↓	Ca ²⁺			
eGFR	=	=/↓				
(Extra)renal signs and symptoms	-	Nephrolithiasis Nephro- calcinosis	Pro-urine CaSR			



	Gitelman syndrome	Bartter sy type III	(ADTKD-) HNF1B	Isolated dominant hypoMg	Mito- chondrial tubulopathy
Gene	SLC12A3	CLCNKB	HNF1B	FXYD2	MT-TI, MT-TF
Inheritance	AR	AR	AD	AD	maternal
Salt-losing	+	+	?	?	?
Alkalosis	+	+	+/-	+/-	+/-
Serum K	\checkmark	\checkmark	=/↓	=/↓	=/↓
Serum Mg	\checkmark	=/↓	\checkmark	\checkmark	\checkmark
Serum Ca	=/个	=	=	=	=
Urine Ca	\checkmark	^/=/↓	=/↓	=/↓	=/↓
RAAS	\uparrow	\uparrow	=	=	?
Blood pressure	=/↓	=/↓	=	?	?
eGFR	=	=/↓	=/↓	=	=/↓
(Extra)renal signs and symptoms	-	Nephrolithiasis Nephro- calcinosis	MODY5, gout, renal cysts, urogenital, liver tests	-	?

"Gitelman-like" tubulopathies - thiazide test?

"Gitelman-like" tubulopathies - thiazide test?

Thiazide Responsiveness Testing in Patients With Renal Magnesium Wasting and Correlation With Genetic Analysis: A Diagnostic Test Study. Bech et al, Am J Kidney Dis. 2016 **Gitelman-Like Syndrome Caused by Pathogenic Variants in mtDNA.** Viering et al, *J Am Soc Nephrol.* 2022

Acquired "Gitelman-like" tubulopathy

BMC Nephrology

Case report Gitelman-like syndrome after cisplatin therapy: a case report and literature review Kessarin Panichpisal, Freddy Angulo-Pernett, Sharmila Selhi and Kenneth M Nugent*

Case presentation: A 42- year-old woman presented with a 20 year-history of hypokalemic metabolic alkalosis with hypomagnesemia and hypocalciuria after cisplatin-based chemotherapy for ovarian cancer. This patient has had chronic muscle aches and fatigue and has had episodic seizurelike activity and periodic paralysis. Only thirteen other patients with similar electrolyte abnormalities have been described in the literature. This case has the longest follow-up.

Radboudumc

BioMed Central

Open Access

Diagnosing "Gitelman-like" syndromes

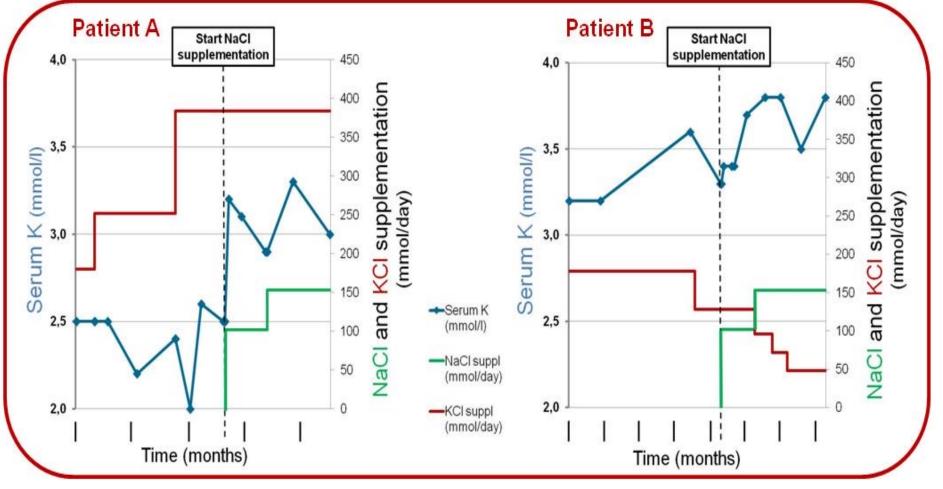
Table 2 Diagnostic criteria for Gitelman syndrome

Criteria for suspecting a diagnosis of GS

- Chronic hypokalemia (<3.5 mmol/l) with inappropriate renal potassium wasting (spot potassium-creatinine ratio >2.0 mmol/ mmol [>18 mmol/g])
- Metabolic alkalosis
- Hypomagnesemia (<0.7 mmol/l [<1.70 mg/dl]) with inappropriate renal magnesium wasting (fractional excretion of magnesium >4%)
- Hypocalciuria (spot calcium-creatinine ratio <0.2 mmol/mmol [<0.07 mg/mg]) in adults.^a
- High plasma renin activity or levels
- Fractional excretion of chloride > 0.5%^b
- Low or normal-low blood pressure
- Normal renal ultrasound

Criteria for establishing a diagnosis of GS

Identification of biallelic inactivating mutations in SLC12A3


Genetics establishes diagnosis and dictates nomenclature

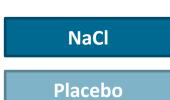
Radboudumc

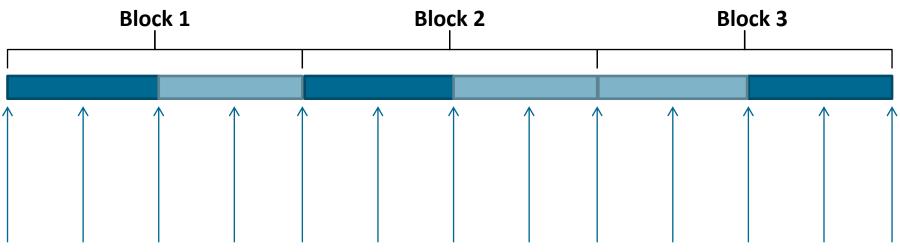
Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference Blanchard et al. *Kidney Int* 2017

Gitelman syndrome - Treatment

- Ad libitum NaCl intake!
 - Pharmacological NaCl supplementation?

Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes

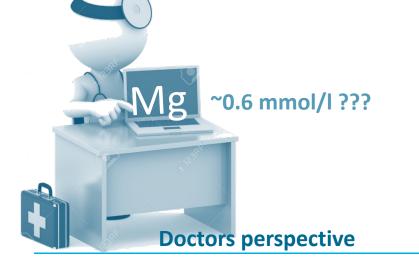

Radboudumc


(KDIGO) Controversies Conference Blanchard et al. *Kidney Int* 2017

Supraphysiological salt supplementation

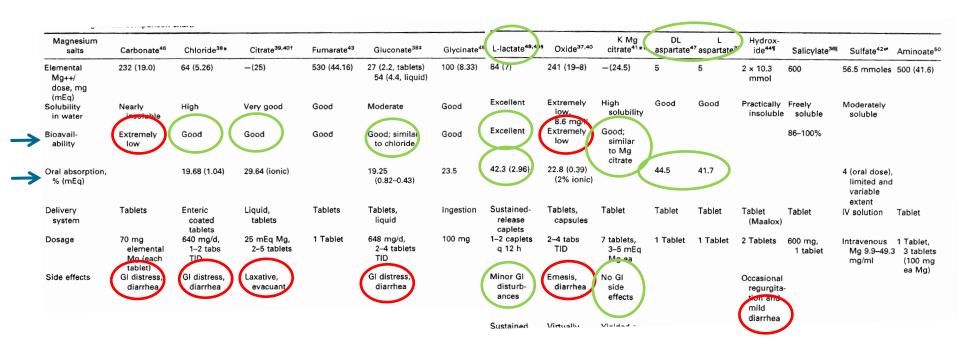
N-of-1 trial(s)

Randomized, placebo-controlled, dubbelblind, cross-over trials in <u>single</u> subjects Extra 12g NaCl per day

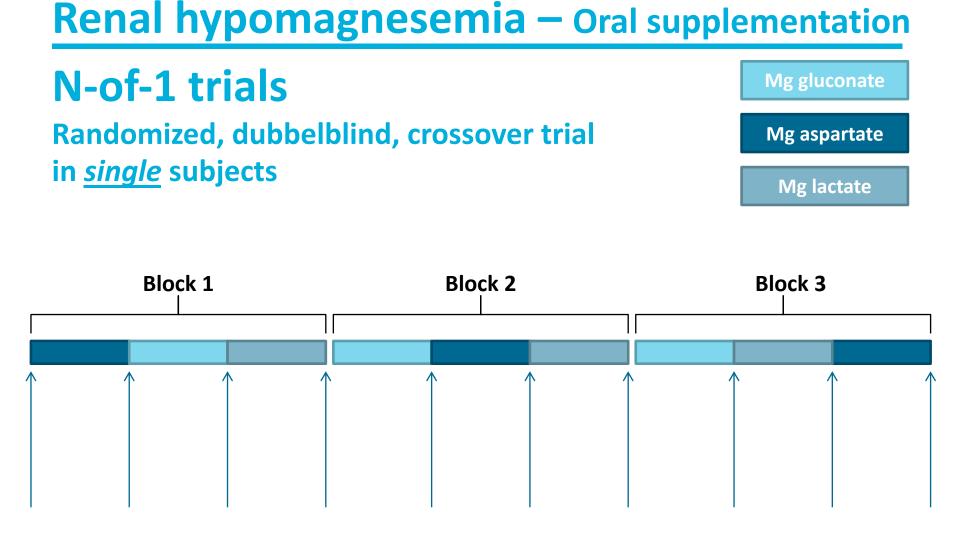

- Serum Potassium
- PROMS: Personalized symptom and generic QoL (Gitelman symptom score and SF36) questionnaires

Renal hypokalemia - Treatment

- Ad libitum NaCl intake!
 - Pharmacological NaCl supplementation?
- Potassium supplementation
 - Acute and severe symptoms: intravenous K correction
 - Chronic and/or milder symptoms: oral K supplementation
 - Preferably K-chloride, in slow-release form
- Other:
 - Potassium-sparing diuretics (but aggravate salt-wasting)
 - Indomethacin (NSAIDs)?
 - RAAS inhibition?
 - Correct the hypomagnesemia
- Goal: K > 3.0 mmol/l


Renal hypomagnesemia - Treatment

- Magnesium supplementation
 - Acute and severe symptoms: intravenous Mg correction
 - Chronic and/or milder symptoms: oral Mg supplementation
- Other:
 - Potassium-sparing diuretics?
- Goal: Mg ~0,60 mmol/l



Renal hypomagnesemia – Oral supplementation

However,

- Almost all have GI side-effects, mostly diarrea
- Practical availability
- Theory vs practice: both (serum Mg) response and side-effects unpredictable

- PROMS: patient-specific outcome questionnaire and generic QoL (SF36) questionnaire
- Serum Mg

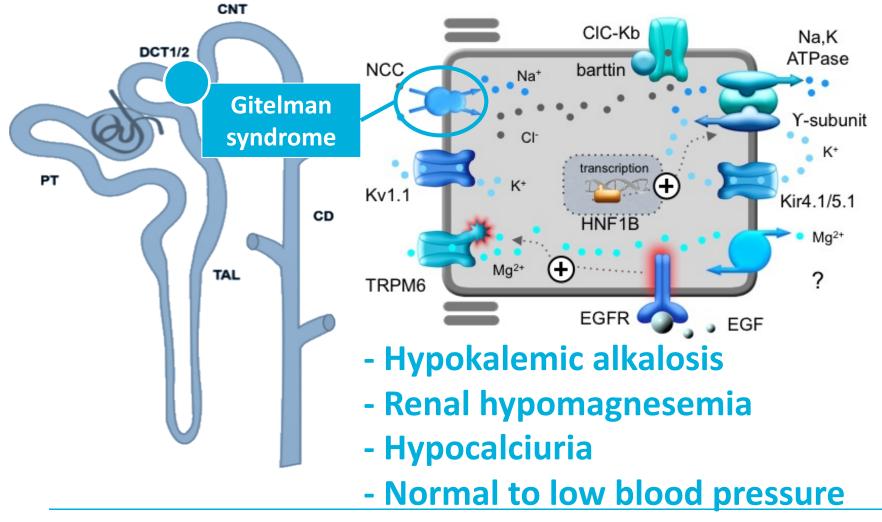
The use of N-of-1 trials to individualize treatment in patients with renal magnesium wasting. Bech, Wetzels, Groenewoud, Nijenhuis. *Am J Kidney Dis* 2019.

Radboudumc

time

Renal hypomagnesemia – Oral supplementation

N-of-1 trials


Patient A	Magnesium gluconate	Magnesium aspartate	Magnesium lactate					
Personalized complaint score (0-10; 10=maximal complaints)								
Muscle aches	9	5	7					
Fatigue	9	7	8					
Gitelman symptoms	9	6	7					
Side effects	8	5	7					
SF36 QoL questionnaire								
Physical functioning	30	65	55					
Social functioning	25	48	48					
Pain	12	67	22					
Serum Mg (0.70-1.10)	0.60	0.60	0.69					

Conclusion: personalized/individualized treatment approach needed

The use of N-of-1 trials to individualize treatment in patients with renal magnesium wasting. Bech, Wetzels, Groenewoud, Nijenhuis. *Am J Kidney Dis* 2019.

Gitelman syndrome

Distal convoluted tubule (DCT)

WEBINAR 28/06/22

Tom.Nijenhuis@Radboudumc.nl

Welcome to

ERKNet/ERA Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

<u>Gitelman syndrome</u> <u>Adult view</u>

Speaker: Tom Nijenhuis (Nijmegen, Netherlands) Patient: Voice: Gitelman patient

Moderator: Elena Levtchenko (Leuven, Belgium)

