

WEBINAR 21/02/23

Welcome to

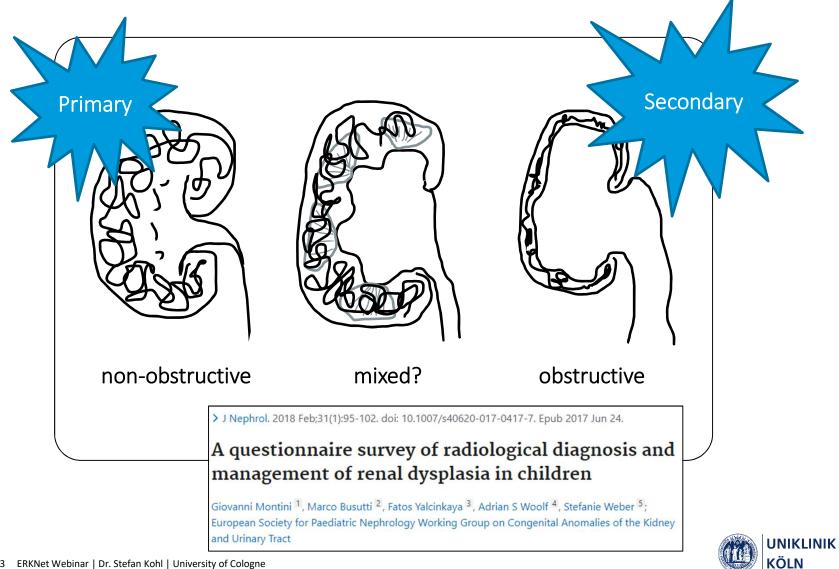
ERKNet/ESPN Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

Dysplasia guideline & LUTO guideline

Speaker: Stefan Kohl (Cologne, Germany) and Valentina Capone (Milan, Italy)

Moderator: Francesco Emma (Rome, Italy)

Non-obstructive kidney dysplasia- Clinical diagnosis and management


ERKNet Postgraduate Curriculum in Rare Kidney Diseases ESPN – IPNA Curriculum in Pediatric Nephrology

PD Dr. Stefan Kohl, ESPN fellow, University of Cologne

21.02.2023 ERKNet Webinar | Dr. Stefan Kohl | University of Cologne

Kidney dysplasia- same, same, but different?

Primary

> Nephrol Dial Transplant. 2022 Nov 23;37(12):2351-2362. doi: 10.1093/ndt/gfac207.

Definition, diagnosis and clinical management of non-obstructive kidney dysplasia: a consensus statement by the ERKNet Working Group on Kidney Malformations

Stefan Kohl ¹, Fred E Avni ², Peter Boor ^{3 4}, Valentina Capone ⁵, William L Clapp ⁶, Diego De Palma ⁷, Tess Harris ⁸, Laurence Heidet ^{9 10}, Alina C Hilger ^{11 12}, Helen Liapis ¹³, Marc Lilien ¹⁴, Gianantonio Manzoni ¹⁵, Giovanni Montini ^{5 16}, Susanna Negrisolo ¹⁷, Marie-Jeanne Pierrat ¹⁸, Ann Raes ¹⁹, Heiko Reutter ^{12 20}, Michiel F Schreuder ²¹, Stefanie Weber ²², Paul J D Winyard ²³, Adrian S Woolf ^{24 25}, Franz Schaefer ²⁶, Max C Liebau ^{1 27 28 29}

Affiliations + expand PMID: 35772019 PMCID: PMC9681917 DOI: 10.1093/ndt/gfac207

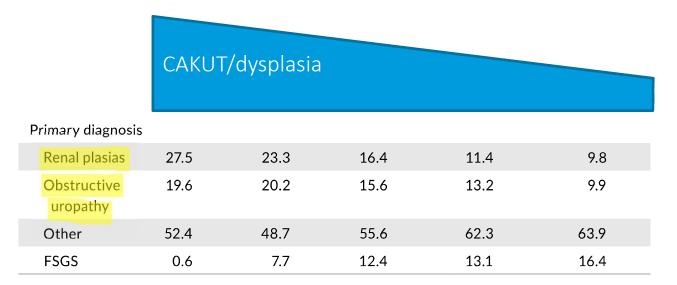
Poll question: How many patients with bilateral kidney dysplasia do you currently treat?

- a) None
- b) <10
- c) 10-20
- d) >20

CAKUT/dysplasia account for 50% of pediatric CKD

	Causes o <mark>f CKD</mark>			Causes of ESRD			
Study [reference]	NAPRTCS [12]	Italian Registry [5]	Belgian Registry [13]	ANZDATA [27]	ESPN/ERA-EDTA Registry [28]	UK Renal Registry [29]	Japanese Registry [30]
Population	CKD (GFR<75)	CKD (GFR<75)	CKD (GFR<60)	ESRD (RRT)	ESRD (RRT)	ESRD (RRT)	ESRD (RRT)
Age range	0-20	0-19	0–19	0–19	0-15	0-15	0-19
Patients	Registered 1994-2007	Incident 1990-2000	Incident 2001-2005	Incident 2003-2008	Incident 2008	Incident 2004-2008	Prevalent 1998
Number of cases	7,037	1,197	143	369	499	428	582
Etiology							
CAKUT	3,36 <mark>1 (48%)</mark>	689 <mark>(58%)</mark>	8 <mark>4 (59%</mark>)	127 (34%)	182 (36%)	184 (43%)	20 <mark>8 (36%</mark>)
Hypodysplasia±reflux nephropathy	1,907	516	66	95		135	19 <mark>8</mark>
Obstructive uropathy	1,454	173	18	32		49	10
Glomerulonephritis	993 (14%)	55 (5%)	10 (7%)	108 (29%)	76 (15%)	78 (18%)	130 (22%)
HUS	141 (2%)	43 (4%)	9 (6%)	9 (2%)	29 (6%)		13 (2%)
Hereditary nephropathy	717 (10%)	186 (15%)	27 (19%)		112 (22%)		69 (12%)
Congenital NS	75	13	5	7		15	34
Metabolic disease			5		17	18	
Cystinosis	104	22	2	4			2
Cystic kidney disease	368 (5%)	101 (8%)	13 (9%)	25 (7%)	59 (12%)	49 (11%)	35 (6%)
Ischemic renal failure	158 (2%)	49 (4%)	3 (2%)	8 (2%)	11 (2%)		11 (2%)
Miscellaneous	1,485 (21%)	122 (10%)	10 (7%)	65 (18%)	52 (10%)	19 (4%)	83 (14%)
Missing/unknown	182 (3%)	40 (3%)		16 (4%)	37 (7%)	65 (15%)	34 (6%)

Table 1 Selected studies on the causes of chronic kidney disease in children

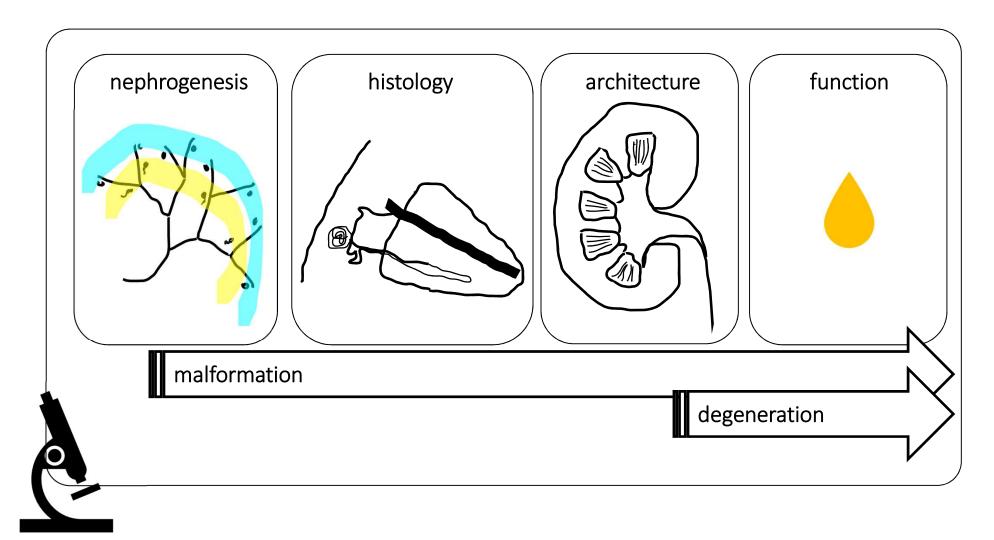

CKD, chronic kidney disease; ESRD, end-stage renal disease; RRT, renal replacement therapy; GFR, glomerular filtration rate (ml/min/1.73 m²); CAKUT, congenital anomalies of the kidney and urinary tract; NS, nephrotic syndrome; HUS, hemolytic uremic syndrome; NAPRTCS, North American Pediatric Renal Trials and Collaborative Studies; ANZDATA, Australia and New Zealand Dialysis and Transplant Registry; ESPN/ERA-EDTA Registry, European Registry for Children on Renal Replacement Therapy

Harambat et al, Pediatr Nephrol (2012)

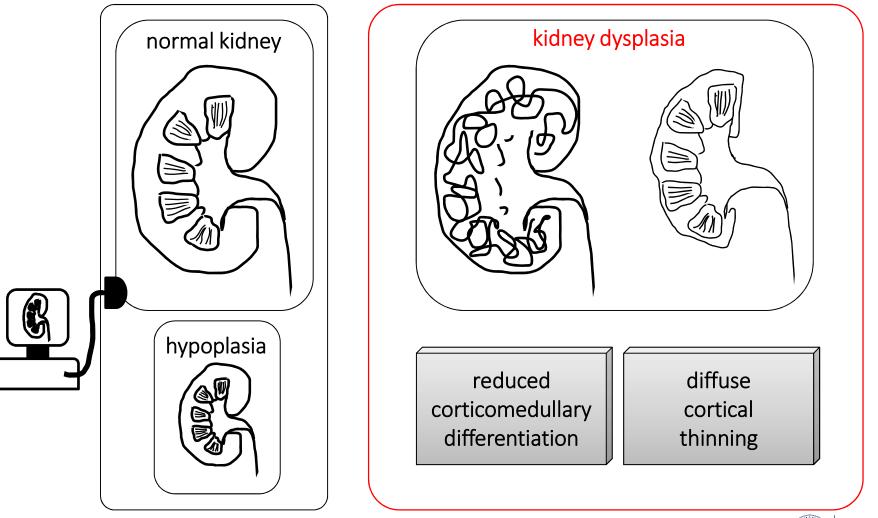
Severely dysplastic kidneys fail early

	Age at trans	Age at transplantation				
	0-1 y (%)	2-5 y (%)	6-12 y (%)	13-17 y (%)	≥18 y (%)	
Gender						
Male	70.0	65.2	58.0	56.0	54.3	
Female	30.0	34.8	42.0	44.0	45.7	

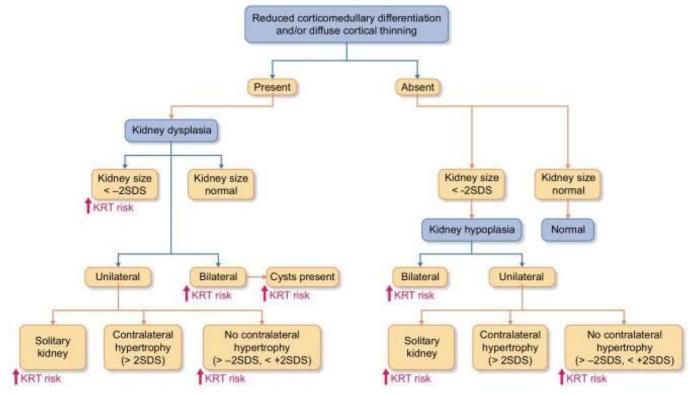
adopted from NAPRTCS report 2018 (Chua et al.)


> Clin J Am Soc Nephrol. 2013 Jan;8(1):67-74. doi: 10.2215/CJN.03310412. Epub 2012 Oct 18.

Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract

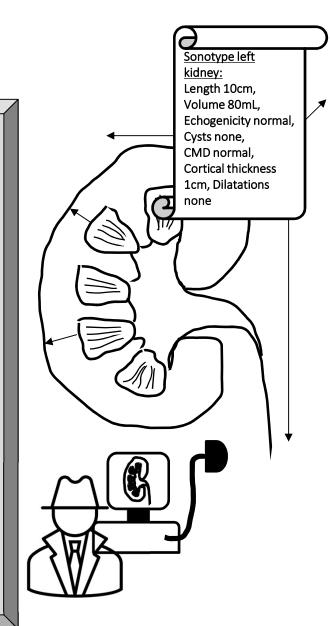

Elke Wühl ¹¹, Karlijn J van Stralen, Enrico Verrina, Anna Bjerre, Christoph Wanner, James Goya Heaf, Oscar Zurriaga, Andries Hoitsma, Patrick Niaudet, Runolfur Palsson, Pietro Ravani, Kitty J Jager, Franz Schaefer

Dysplasia- the absence of "normal"...



The <u>clinical</u> diagnosis of kidney dysplasia

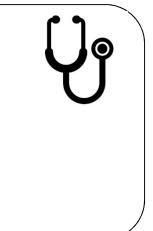
Kidney dysplasia: Sonographic risk assessment



Kohl et al., Nephrol Dial Transplant., 2022

The kidney "sonotype"

- Area (*Prenatal*: Amniotic Fluid)
 - length, volume
- Brightness
 - echogenicity normal, increased
- Cysts & Circulation
 - None, single, few, multiple
 - localization of cysts?
 - If possible: Vascular patency (Doppler)
- Differentiation, corticomedullary
 - normal, reduced, absent
- Edge
 - cortical thickness, diffuse cortical thinning
- Flow
 - diameter of renal pelvis (transversal plane)
 - Prenatal: Bladder volume


Kidney dysplasia: clinical management

Diagnostic workup

- Bilateral disease? eGFR baseline?
- Involvement of other organs?
- VCUG not routinely required
- Scintigraphy not routinely required
- Genetic testing in selected cases

Therapy: Prevent progression of CKD

- Treat microalbuminuria (RAAS inhibitors)
- Treat hypertension
- Treat other complications of CKD
- Avoid urinary tract infections and additional kidney injuries
- Kidney replacement therapy

Genetic testing in monogenic CAKUT/dysplasia

- Less than 5% of all CAKUT are monogenic
- In selected cohorts 20%+ of CAKUT are monogenic
- Consider genetic testing in
 - <u>severe</u> CAKUT
 - <u>familial</u> CAKUT
 - <u>syndromic</u> CAKUT
- Diagnostic genetic testing in LUTO not recommended
- We suggest testing by WES with in-silico filtered "kidney panel" and CNV analysis
- Kidney dysplasia/hypoplasia cannot be differentiated genetically
- Genetic testing and counseling in CAKUT is challenging (variable expressivity, incomplete penetrance, questionable "CAKUT genes")

Nicolaou et al, *KI*Hwang et al, *KI*Ahn et al, *J Clin Med*Heidet et al, *JASN*

Kidney dysplasia: Prenatal counseling

- Postnatal course and kidney function cannot be predicted accurately
- Think and speak in terms of "more likely or less likely"
- Re-evaluate throughout pregnancy as situation may change
- Amniotic fluid volume and lung size as predictor for lung hypoplasia
- We do not recommend prenatal testing for variants in "CAKUT genes"
- In syndromic CAKUT, consider prenatal genetic testing for chromosomal aberrations

© Kohl & Liebau, Kidney360, editorial, accepted

Thank you!

Kidney dysplasia: prognosis

EXHIBIT 14.2 CKD TERMINATION BY SELECTED PATIENT CHARACTERISTICS AT BASELINE (continued)

				Reason for Termination (%)				
	Number of Patients	Number of Terminations	Percent Terminations	Transplant	Dialysis	Native Function Returned	Death	Other/ Unknown
Primary Diagnosis								
Obstructive Uropathy	1454	648	44.6	40.4	45.4	3.5	2.0	8.6
Renal Plasias	1220	576	47.2	42.5	45.3	3.0	4.2	5.0
Reflux Nephropathy	594	196	33.0	39.3	43.9	3.1	1.5	12.2
FSGS	613	368	60.0	19.0	73.1	1.6	1.1	5.2
Other/Unk/Missing	3156	1448	45.9	31.7	53.0	3.0	5.1	7.2

NAPRTCS 2008

5 years follow up: Almost 50% of patients on KRT

Kidney dysplasia is the most frequent cause for CKD in children

NAPRTCS 2008 Chronic Kidney Disease

	All Patients			Biopsy Diagnosis
	N %		N	%
Total	7037	100.0	6631	29.8
Primary Diagnosis				
Obstructive uropathy	1454	20.7	1399	8.1
A/hypo/dysplastic kidney	1220	17.3	1154	7.0
FSGS	613	8.7	604	93.9
Reflux nephropathy	594	8.4	566	7.1
Polycystic disease	278	4.0	265	20.0

EXHIBIT 13.1B CKD PRIMARY DIAGNOSIS

WEBINAR 21/02/23

Welcome to

ERKNet/ESPN Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

<u>Dysplasia guideline &</u> <u>LUTO guideline</u>

Speaker: Stefan Kohl (Cologne, Germany) and Valentina Capone (Milan, Italy)

Moderator: Francesco Emma (Rome, Italy)

ERKNeT Consensus Statement on fetal LUTO

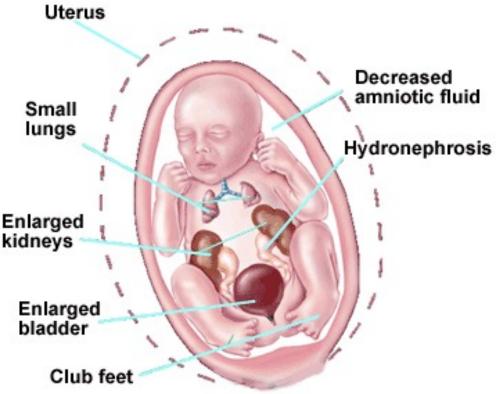
Valentina Capone

Pediatric Nephrology, Dialysis and Transplant Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano

Fetal lower urinary tract obstruction (LUTO)

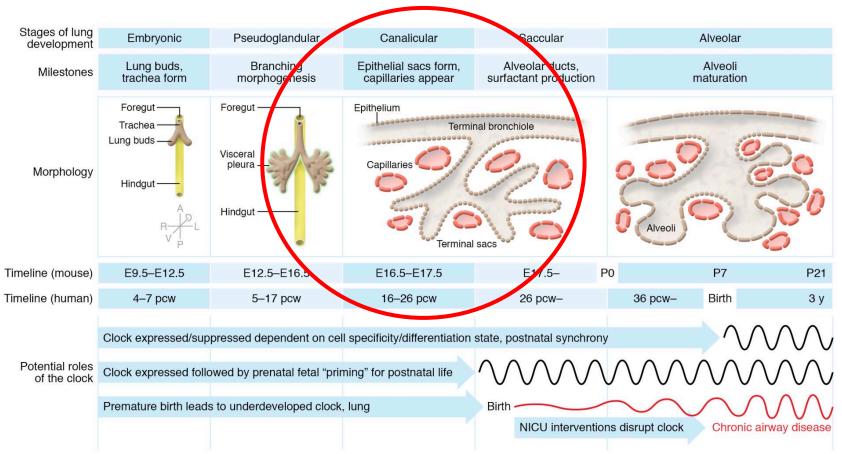
Obstruction to flow of urine from fetal bladder

- 2-3/10,000 fetuses
- 1:1 prenatal:postnatal diagnosis
- Causes: ++ posterior urethral valves, urethral atresia


 Other causes: anterior urethral valves, megalourethra, cloacal malformations and prolapsing ureterocele

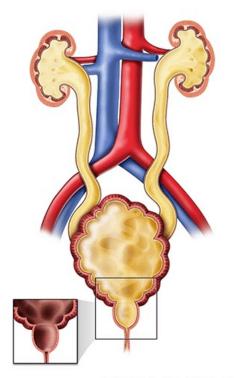
Consequences of fetal LUTO

- progressive bladder dilation and bladder wall thickening
- subsequent hydro-ureteronephrosis
 - kidney parenchymal compression
 - Oligohydramnios/anhydramnios



Lung hypoplasia

60-80% mortality if diagnosed in the second trimester of gestation Lifetime risk of developing ESKD ~30%



Kidney damage

- Direct compression of kidney parenchima
- Gene mutations

© 2014 The Children's Hospital of Philadelphia

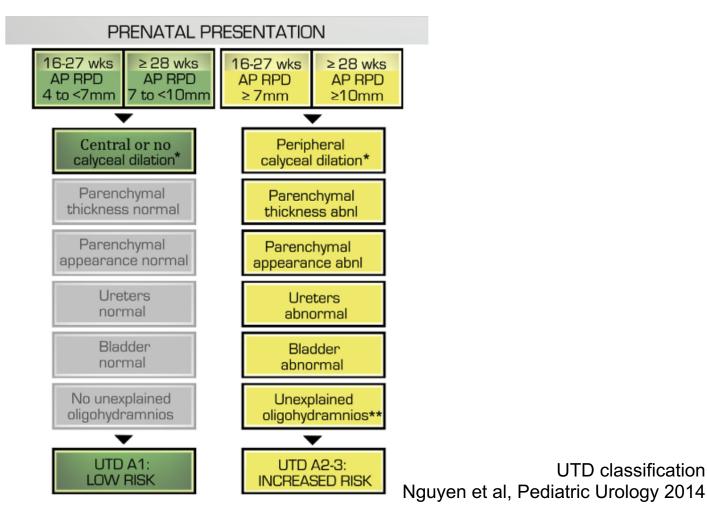
Lack of guidelines on fetal LUTO

- Diagnostic features
- Differential diagnosis
- Prediction of postnatal outcome
- Benefits and limits of fetal intervention

CONSENSUS STATEMENT

Nature Reviews Urology 2022

Definition, diagnosis and management of fetal lower urinary tract obstruction: consensus of the ERKNet CAKUT-Obstructive Uropathy Work Group



Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

Prenatal diagnosis: APD

Prenatal diagnosis – poll question

What prenatal ultrasonographic feature is more suggestive of

<u>lower</u> urinary tract obstruction?

- Bilateral hydronephrosis
- Anhydramnios
- Enlarged bladder
- Kidney cysts

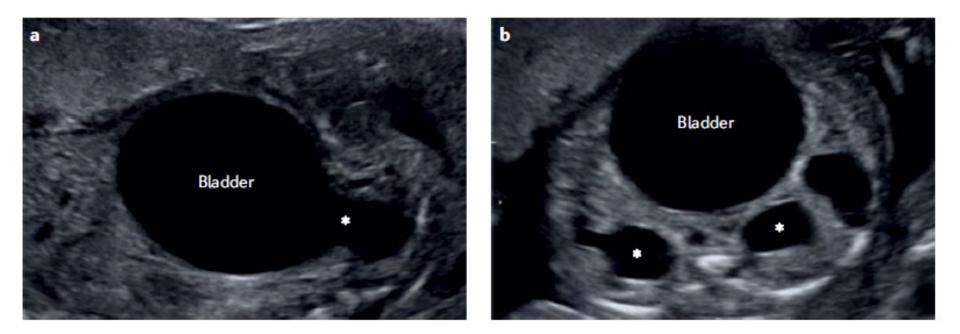
Prenatal diagnosis: megacystis

I trimester:

- longitudinal bladder diameter ≥7 mm
- 7-12 mm resolves in ~ 90% of cases
- ≥15 mm strongly suggestive of LUTO

II trimester:

 bladder that fails to void over 40 mins



Prenatal diagnosis

Classical triad: megacystis, keyhole sign and bilateral hydronephrosis

Prenatal diagnosis

143 fetuses with megacystis18 weeks' gestation onwards

Variable	Points
Severe megacystis*	4
Bilateral ureteral diameters	1.3/mm†
Oligo- or anhydramnios	4
Male fetal sex	4
Referral < 28 weeks	4

Score of \geq 9.5 indicates LUTO. *Bladder volume > 35 cm³ or ascites. †Value for each mm of ureteral size.

> than classical triad in identifying LUTO vs non obstructive megacystis

Fontanella et al, Ultrasound Obstet Gynecol, 2018

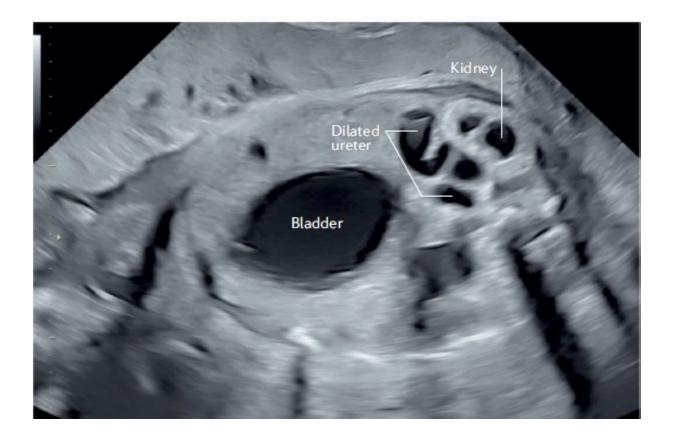
Prenatal diagnosis

Recommendation 1

The most reliable parameter for suspecting the presence of obstructive uropathy is the antero-posterior diameter (APD) of the renal pelvis, as proposed by the Urinary Tract Dilation (UTD) classification. Pelvic dilation is defined by an APD \geq 7 mm at 16–27 weeks and \geq 10 mm at \geq 28 weeks' gestation. An APD of 4–6 mm at 16–27 weeks and 7–9 mm at \geq 28 weeks' gestation should be given clinical consideration prenatally only if associated with other signs of obstructive uropathy.

Recommendation 2

Prenatal suspicion of lower urinary tract obstruction (LUTO) requires the presence of an enlarged fetal bladder (megacystis) on obstetric ultrasound scan at any stage during pregnancy. In the first trimester, fetal megacystis (defined as a longitudinal bladder diameter of \geq 7 mm) is strongly suggestive of LUTO if the longitudinal bladder diameter is \geq 15mm. Further research is needed to objectively define bladder enlargement during the second and third trimesters and to differentiate between obstructive and non-obstructive causes of prenatal megacystis through the development of a reliable severity scoring system.



Outcome prediction: survival

Outcome prediction: survival

Table 4—Prognostic	variables for	survival of	live born children
--------------------	---------------	-------------	--------------------

Postnatal course	Alive $N = 10$	Neonatal death $N = 15$	P value
Maternal age >36 years	2	2	1.00
GA delivery (weeks: median, range)	35.3 (34.3 38.5)	34.6 (31 39.5)	0.24
GA oligohydramnios	32.2 (25.2–37.3)	28.1 (18.3-35.5)	0.02
Birth weight (g)	2617 (1830-3730)	2535 (1700-3300)	0.77
Renal diagnosis	1	5	0.05 ^a
Dysplasia	2	6	0.08
Polycystic	7	4	0.04
Hydronephrosis	1	7	0.05
Anhydramnios	9/1	7/8	0.67
Isolated renal anomaly/+other structural or chromosomal abnormalities	0	5	0.002
Diagnosis <24 weeks	0	10	0.04
Apgar score 5 min \leq 5	1	8	
Ventilatory support	4	2	1.00
No/not started	5	5	0.46
CPAP, SIMV, or conventional pressure ventilation	3/9	3/7	
HFO or ECMO	5 (1-17)	1 (0-14)	
Pneumothorax (/ventilatory support) Duration ventilatory support (days, median(range))			

Kidney function prediction – poll question

What is the most reliable predictor of postnatal kidney function?

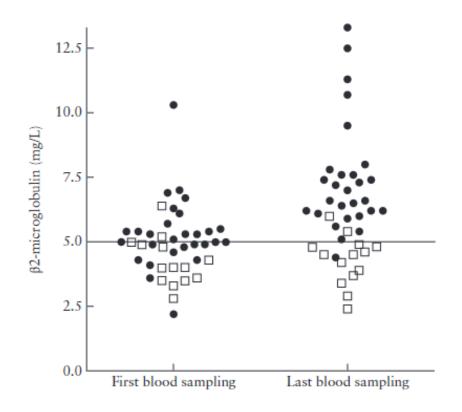
- Anhydramnios before 20 weeks of gestation
- Fetal blood beta2microglobulin
- Fetal urine beta2microglobulin
- Kidney dysplasia

Outcome prediction: kidney function

Table 3. Subgroup meta-analysis (random effects model) of antenatal ultrasound diagnostic measures to predict poor postnatal renal function in survivors with congenital lower urinary tract obstruction

Diagnostic measure	Sensitivity (95% confidence intervals)	Specificity (95% confidence intervals)	Chi-square test (<i>P</i> value)	Area under receiver operating characteristic curve
Oligohydramnios	0.63 (0.51-0.74)	0.76 (0.65-0.85)	19.67, (0.02)	0.74
Renal cortical appearance	0.57 (0.37-0.76)	0.84 (0.71-0.94)	10.29, (0.04)	0.78
Gestation at diagnosis <24 weeks	0.48 (0.26-0.70)	0.82 (0.66-0.92)	3.88, (0.14)	0.68

Morris RK, BJOG 2009



Outcome prediction: kidney function

42 fetuses with LUTO

Measurement	Sensitivity	Specificity	
β2m			
First sampling	18/28 (64.3)	11/14 (78.6)	
Last sampling	27/28 (96.4)	12/14 (85.7)	
AFV	, ,	, ,	
First sampling	10/28 (35.7)	10/14 (71.4)	
Last sampling	21/28 (75.0)	9/14 (64.3)	

Data are given as n/N (%).

Spiaggiari E, Ultrasound Obstet Gynecol 2017

Kidney function prediction – poll question

What is the most reliable predictor of postnatal kidney function?

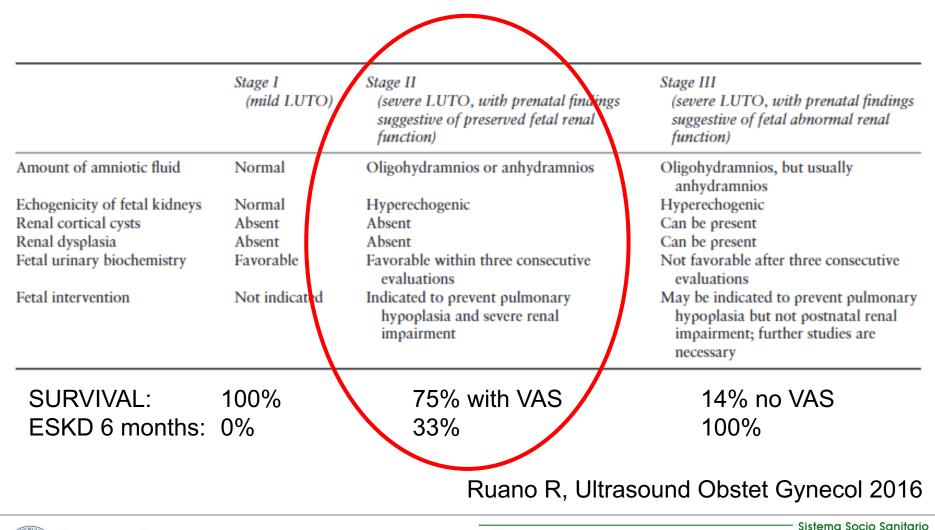
- Anhydramnios before 20 weeks of gestation
- Fetal blood beta2microglobulin
- Fetal urine beta2microglobulin
- Kidney dysplasia
- NONE OF THE ABOVE

Outcome prediction

Recommendation 3 The risk of fetal and neonatal death has to be based on the presence of oligohydramnios or anhydramnios before 20 weeks' gestation, which is a strong predictor of pulmonary hypoplasia.

Recommendation 4

The risk of kidney replacement therapy cannot be foreseen before birth, as amniotic fluid volume, kidney parenchymal echogenicity and fetal urine biomarkers are not reliable predictors. Normal postnatal kidney function is also not predictable by a normal amount of amniotic fluid.


	Stage I (mild LUTO)	Stage II (severe LUTO, with prenatal findings suggestive of preserved fetal renal function)	Stage III (severe LUTO, with prenatal findings suggestive of fetal abnormal renal function)
Amount of amniotic fluid	Normal	Oligohydramnios or anhydramnios	Oligohydramnios, but usually anhydramnios
Echogenicity of fetal kidneys	Normal	Hyperechogenic	Hyperechogenic
Renal cortical cysts	Absent	Absent	Can be present
Renal dysplasia	Absent	Absent	Can be present
Fetal urinary biochemistry	Favorable	Favorable within three consecutive evaluations	Not favorable after three consecutive evaluations
Fetal intervention	Not indicated	Indicated to prevent pulmonary hypoplasia and severe renal impairment	May be indicated to prevent pulmonary hypoplasia but not postnatal renal impairment; further studies are necessary
SURVIVAL: ESKD 6 months:	100% 0%	75% with VAS 33%	14% no VAS 100%

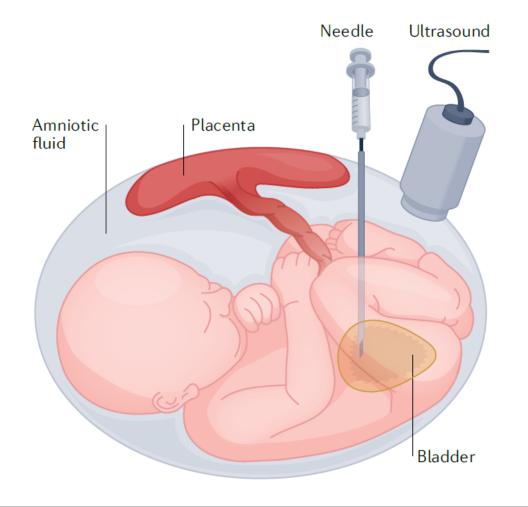
Ruano R, Ultrasound Obstet Gynecol 2016

LUTO stage	Definition
Severe	Bladder volume ≥ 5.4 cm ³ and/or oligo- or anhydramnios before 20 weeks
Moderate	Bladder volume < 5.4 cm ³ and/or normal AFV at 20 weeks
Mild	Normal AFV at 26 weeks

Fontanella F, Ultrasound Obstet Gynecol 2019

	LUTO stage						
Variable	Severe $(n = 33)$	Moderate (n = 38)	<i>Mild</i> (n = 70)				
Perinatal mortality	18 (54.5)	10 (26.3)	6 (8.6)				
GA at appearance of oligo- or anhydramnios (weeks)	21 ± 8	29 ± 8	35 ± 4				
ARCA	26 (78.8)	26 (68.4)	24 (34.3)				
Mean eGFR (mL/min/1.73 m ²)†	65 ± 47	57 ± 44	87 ± 43				
Severely impaired renal function [†] ‡	4/9 (44.4)	5/16 (31.3)	4/36 (11.1)				

Fontanella F, Ultrasound Obstet Gynecol 2019


Recommendation 5

Multi-parameter scoring systems to stage the severity of LUTO and to predict postnatal outcome have been proposed, but have not yet been clinically adopted. Further clinical validation and the adoption of standardized assessment across prenatal centres are needed.

COMPLICATIONS: 40%

- shunt dislocation or retraction
- shunt blockage
- fetal ascites
- premature rupture of membranes
- preterm labour
- abdominal wall herniation
- fetal demise

Capone, Nature Reviews Urology 2022

Ultrasound Obstet Gynecol 2017; 49: 696–703 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.15988

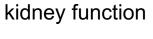
Effectiveness of vesicoamniotic shunt in fetuses with congenital lower urinary tract obstruction: an updated systematic review and meta-analysis

A. A. NASSR^{1,2,3#}, S. A. M. SHAZLY^{1,2#}, A. M. ABDELMAGIED^{1,2}, E. ARAUJO JÚNIOR⁴, G. TONNI⁵, M. D. KILBY⁶ and R. RUANO⁷

- 9 studies
- 246 fetuses
- VAS 20-27 wks vs conservative management
- Up to 2 yrs follow up

		rention	No inter		W. (] (0/)	Odds ratio	Odds ratio
Study or subgroup	Events	Total	Events	Total	Weight (%)	M-H, random, 95%	CI M-H, random, 95% CI
Cases selected by 'favorable	,	F	-				
Ruano (2015)9	7	13	12	35	16.7	2.24 (0.61-8.16)	
Freedman (1996) ²⁵	14	21	5	10	14.2	2.00 (0.43-9.29)	
Crombleholme (1990) ²¹	8	9	5	7	7.0	3.20 (0.23-45.19)	
Subtotal (95% CI)		43		52	37.8	2.24 (0.89-5.67)	-
Total events	29		22				
Heterogeneity: tau ² = 0.00;			P = 0.96); $I^2 = 0$	%		
Test for overall effect: $Z = 2$	1.71 (P = 0)	0.09)					
Cases selected by 'non-favor	rable' fetai	l urinary	biochemist	try			
McLorie (2001)26	6	8	0	1	4.4	7.80 (0.23-262.81)	
Freedman (1996) ²⁵	3	6	0	5	5.0	11.00 (0.43-284.30)	
Johnson (1994) ²⁴	2	6	0	5	5.0	6.11 (0.23-162.73)	
Crombleholme (1990) ²¹	3	9	0	14	5.4	15.62 (0.70-348.11)	
Subtotal (95% CI)		29		25	19.9	9.72 (1.89-50.09)	
Total events	14		0				
Heterogeneity: tau ² = 0.00;	$chi^2 = 0.1$	9, df = 3	(P = 0.98)); $I^2 = 0$	%		
Test for overall effect: $Z = Z$	2.72 (P = 0)	0.007)					
Cases included with both 'fa	avorable" a	and 'non-	favorable'	fetal uri	nary biochem	istry	
Morris (2015)27	4	9	24	30	13.7	0.20 (0.04-0.98)	
Morris (2013)5	9	13	3	13	12.3	7.50 (1.31-43.03)	
Lipitz (1993)23	6	12	3	7	11.3	1.33 (0.20-8.71)	
Nicolini (1991)22	2	6	0	7	5.0	8.33 (0.32-215.68)	
Subtotal (95% CI)		40		57	42.3	1.71 (0.26-10.99)	
Total events	21		30				
Heterogeneity: tau ² = 2.49;			3 (P = 0.0	2); $I^2 = 1$	71%		
Test for overall effect: $Z = 0$	0.56 (P = 0)	0.57)					
Total (95% CI)		112		134	100.0	2.54 (1.14-5.67)	◆
Total events	64		52				
Heterogeneity: tau ² = 0.57;	$chi^2 = 14$.99, df =	10 (P = 0.	13); I ² =	33%		0.001 0.1 1 10 10
Test for overall effect: $Z = Z$	2.28 (P = 0)	0.02)					Favors no intervention Favors intervention
Test for subgroup difference	1.2	10 10	2 (0 0	20 12	35.00/		

Perinatal survival (6 months)


Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

	Intervention No intervention Events Total Events Total		vention		Odds ratio	Odds ratio				
Study			Total	Weight (%)	M-H, random, 95%	CI	M-H, random, 95% CI			
Ruano (2015)9	7	13	12	35	29.4	2.24 (0.61-8.16)		_	+	
Morris (2015)27	2	10	24	35	26.9	0.11 (0.02-0.63)				
Morris (2013)5	8	14	2	14	26.1	8.00 (1.28-50.04)				
Nicolini (1991)22	2	6	0	7	17.6	8.33 (0.32-215.68)		_		
Total (95% CI)		43		91	100.0	1.77 (0.25-12.71)				
Total events	19		38					1		
Heterogeneity: tau2 =	: 3.01; chi ² =	= 13.44,	df = 3 (P =	0.004);	$l^2 = 78\%$				+	
Test for overall effect	: Z = 0.57 (I	P = 0.57					0.001	0.1 1	10	1000
	2						Favors	no intervention	Favors intervention	1

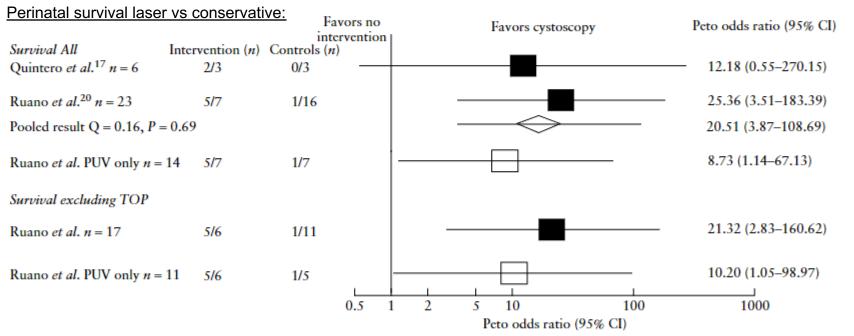
Figure 3 Forest plot of postnatal survival at 6-12 months of age in fetuses with lower urinary tract obstruction treated with vesicoamniotic shunt (intervention) or conservative management (no intervention). M-H, Mantel-Haenszel.

	Intervention No intervention			vention		Odds ratio	Odds ratio M-H, random, 95% CI				
Study	Events Total Events Total		Total	Weight (%)	M-H, random, 95% Cl						
Morris (2015)27	1	2	13	23	13.0	0.77 (0.04-13.87)			•		
Ruano (2015)9	6	10	11	28	50.0	2.32 (0.53-10.13)			+	-	
Morris (2013)5	2	7	0	3	9.9	3.18 (0.12-87.92)		_	-	•	-
Freedman (1996)25	11	14	4	5	16.9	0.92 (0.07-11.58)			-		
Crombleholme (1990) ²¹	8	8	3	5	10.1	12.14 (0.46-323.23)			-	•	
Total (95% CI)		41		64	100.0	2.09 (0.74-5.94)					
Total events	28		31								
Heterogeneity: tau ² = 0.	f = 4 (P = 0)	0.001	0.1	1	10	100					
Test for overall effect: Z	= 1.39 (1	P = 0.17)					no interventi	on	Favors inter	

Postnatal

Survival at

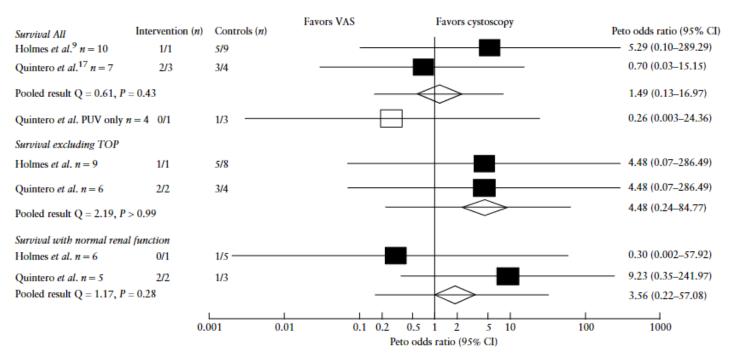
6-12 months



Fetal surgical management cystoscopic laser ablation of PUVs

Metanalysis, 4 studies, 63 fetuses VAS vs cystoscopic laser ablation of PUVs vs conservative management

Morris RK, Ultrasound Obstet. Gynecol, 2011



Fetal surgical management cystoscopic laser ablation of PUVs

Perinatal survival laser vs VAS

Morris RK, Ultrasound Obstet. Gynecol, 2011

Recommendation 7

Based on existing evidence that vesico-amniotic shunt placement increases perinatal survival in fetuses with LUTO, fetal intervention should be offered in selected cases. However, parents should be made aware of the residual risk of long-term mortality and kidney function impairment.

Conclusions

- Prenatal diagnosis, severity assessment and correct management of LUTO are challenging, given the lack of specific diagnostic features that can guide clinical approaches and decisions
- Fetuses with prenatal megacystis need to be referred to a tertiary obstetric centre with multidisciplinary expertise
- If prenatal treatment is indicated, parents must be informed about the potential benefits for postnatal survival, but they should also be made aware of the residual risk of postnatal kidney failure
- Further studies are needed to improve standardization of ultrasonographic diagnostic parameters, validate prenatal biomarkers and improve staging systems to optimize prenatal care and to provide a more accurate selection of patients who might benefit most from fetal intervention, in terms of long- term survival and kidney function.

THANK YOU!

NEXT **WEBINARS** 07/03/23 21/03/23

25/04/23

Subscribe our Newsletter Or follow us on Twitter @EuRefNetwork

Adenine phosphoribosyltransferase deficiency: an undiagnosed cause of renal failure Aude Servais (Paris, France)

<u>Glycogen storage disease lb and XI, disease</u> <u>mechanisms and novel treatment</u> Francesco Trepiccione (Naples, Italy)

<u>Disorders of renal calcium handling</u> Pascal Houillier (Paris, France)

