

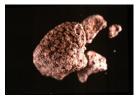
WEBINAR 07/03/2023

Welcome to

ERKNet/ERA Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

<u>APRT deficiency: an</u> <u>undiagnosed cause of</u> <u>renal failure</u>

Speaker: Aude Servais (Paris, France)


Moderator:

Tom Nijenhuis (Nijemegen, Netherlands)

APRT deficiency: an underdiagnosed cause of renal failure

A Servais

Department of Nephrology and Transplantation Reference Center for Rare Hereditary Kidney Diseases (MARHEA)

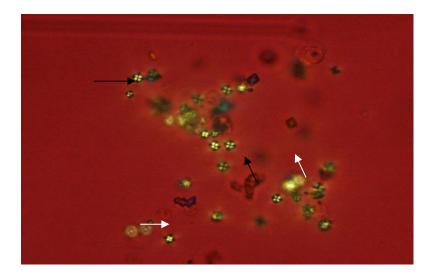
Inserm U1163, Hôpital Universitaire Necker,

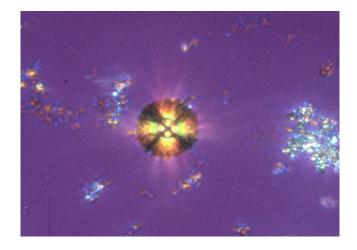
Paris, France

Hereditary Nephrolithiasis

- 2% of adult stones
- 10%-20% of children stones
- Often overlooked
- Carry a high burden of :
 - stone recurrence
 - CKD , potentially leading to ESRD
- Awarness of nephrologists could decrease delay to diagnosis and improve outcome

Case


- Male pt
- 1st nephrology consult for CKD at 52 yrs
- Past history of stone disease:
 - Starting at 32 yrs
 - 3 extracorporeal shock wave lithotripsies, 1 lombotomy
 - Radiolucent stones by CT scan
 - No stone analysis
- Biochemistry:
 - Blood: Creatinine 180 μmol/l (eGFR 37 ml/mn); Uric Acid 380 μmol/l; normal ionogram
 - Urines:
 - pH 6.5
 - Uric acid 3,2 mmol/day
 - Normal calciuria, oxaluria


How to make the Diagnosis?

- Urine density
- Uric acid excretion
- Crystalluria
- Stone analysis
- Renal biopsy

How to make the Diagnosis?

Crystalluria !

Numerous round and reddishbrown crystals

« Maltese cross » aspect by polarized light

= 2,8 DHA crystals

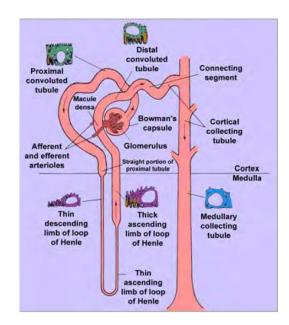
Main Causes of Hereditary Nephrolithiasis/ Crystalline Nephropathies

- Inborn errors of Metabolism
 - Oxalate

Primary Hyperoxaluria

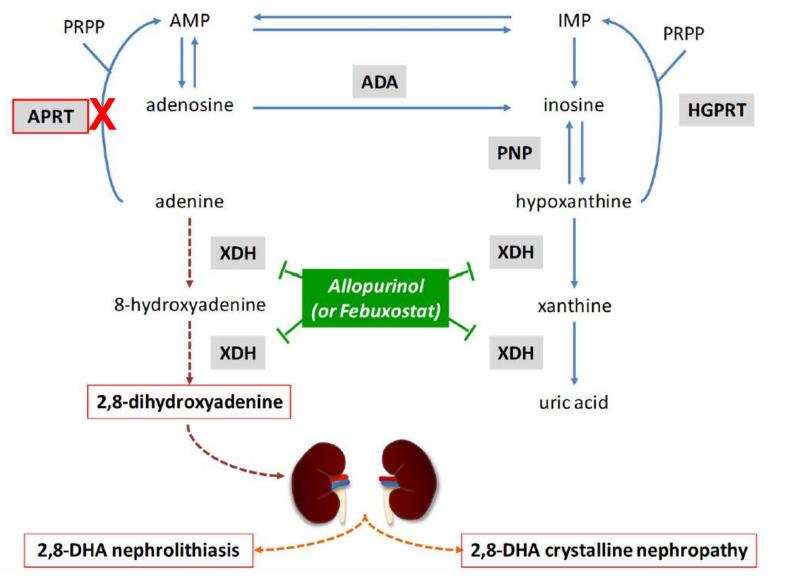
XO deficiency

- Purines
 - Uric Acid HGPRT deficiency
 - 2,8 DHA APRT deficiency
 - Xanthine
- Pyrimidines
 - Orotic acid UMP Synthase
- Ca/Vit D : CYP24A1
- Renal Tubular Transport Defects
 Proximal Tubule
 - Dent disease (CIC5, OCRL)
 - Phosphate leakage (NpT2a, NpT2c, NHERF)
 - Hyperuricuria (URAT1, GLUT9)
 - Henle's Loop

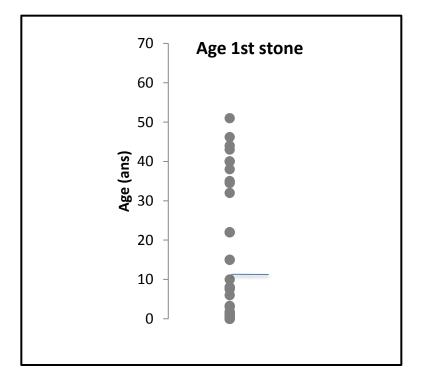

Bartter Syndrome (NKCC2, ROMK, CClkb)

Familial Hypomagnesemia (Cld16/19)

Familial Autosomal Dominant Hypocalcemia (CasR)

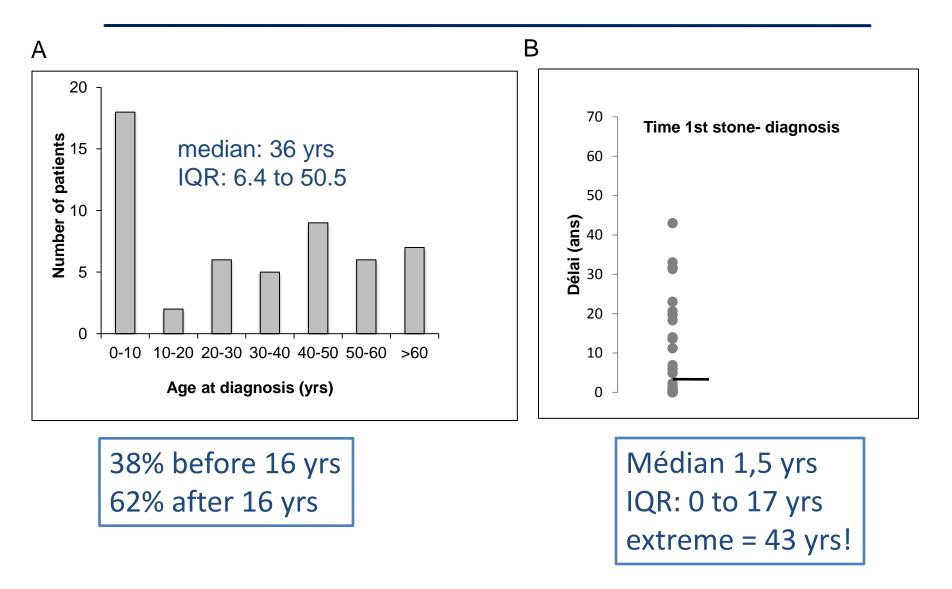

Collecting Duct

• Distal Renal Tubular Acidosis (H+ATPase, AE1)


Bollée G et al. JASN 2010

Phenotype and Genotype Characterization of Adenine Phosphoribosyltransferase Deficiency

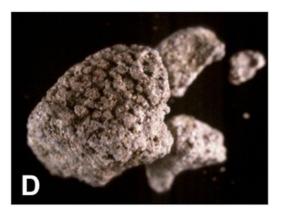
Guillaume Bollée,* Cécile Dollinger,[†] Lucile Boutaud,[†] Delphine Guillemot,[†] Albert Bensman,[‡] Jérôme Harambat,[§] Patrice Deteix,[∥] Michel Daudon,[¶] Bertrand Knebelmann,* ** and Irène Ceballos-Picot[†]


53 cases /43 families Origin: France and other countries

prevalence :1/50,000-1/100,000 less than 300 reported cases worldwide

Median age at first stone: 12.5 yrs IQR 3.1 to 35 yrs

Age at Diagnosis: often delayed !

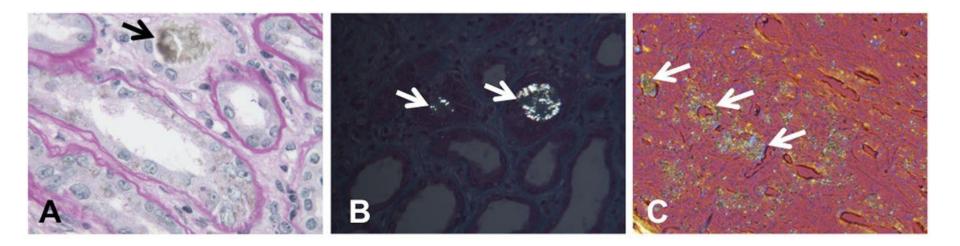

Bollée et al, JASN, 2010

Means for Diagnosis

- Stone Analysis
- Crystalluria
- Kidney Biopsy
 - native
 - transplant
- APRT activity
- Asymptomatic

58% 28% 11% 4% 6% 77%

4%



Reddish-brown turning gray when drying and friable stones Composition confirmed by infrared spectroscopy

Reddish-brown diaper stain = 2,8 DHA crystals

Renal biopsy

64-year-old woman with renal failure who had experienced only one stone episode 33 years earlier


- Tubulointerstitial injury secondary to precipitation of crystals
- Polarized light view allows better visualization of crystals
- Polarized microscopic view shows crystals in renal parenchyma
- Infrared analysis confirmed the DHA nature of crystals

- APRT activity in erythrocytes lysates is not mandatory but is useful when available
- In type I APRT deficiency
 - nearly all cases in non-Japanese patients
 - activity is null in vitro
- In type II
 - APRT activity is usually 15%–30% of normal activity

Urinary 2,8-dihydroxyadenine excretion

- Several methods for quantifying DHA: HPLC coupled to tandem mass spectrometry and a multichannel ultraviolet detector, or capillary electrophoresis
- Ultra-performance liquid chromatography electrospray tandem mass spectrometry (UPLC-MS/MS) assay for absolute urinary quantification of DHA
 - 100% sensitivity and specificity for the the diagnosis of APRT deficiency in patients who are not receiving treatment
 - urinary DHA not detected in samples from heterozygotes, healthy individuals and many treated patients

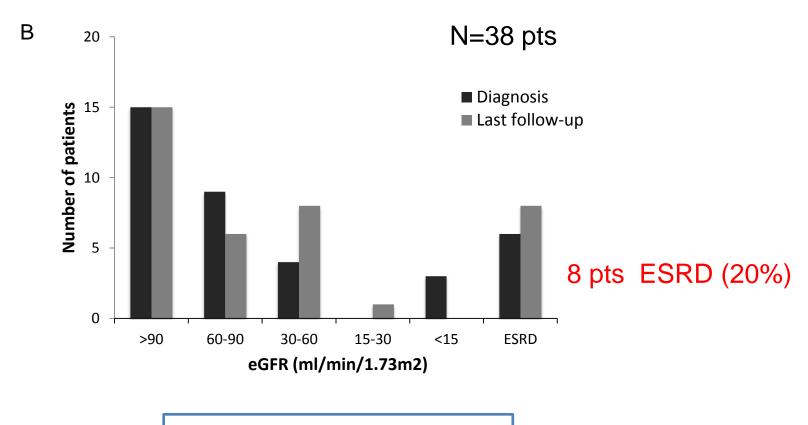
Runolfsdottir et al, Mol Genet Metab 2019

Genetics of APRT deficiency

- Autosomal recessive
- APRT gene located on chromosome 16q24
- Mutant alleles in type I classified as APRT*Q0

 encompasses a heterogeneous collection of
 mutations distributed along the coding sequence
- Type II caused by a single mutant allele with a missense mutation referred to as APRT*J – reported exclusively in the Japanese population
- 10% of mutations remain unidentified

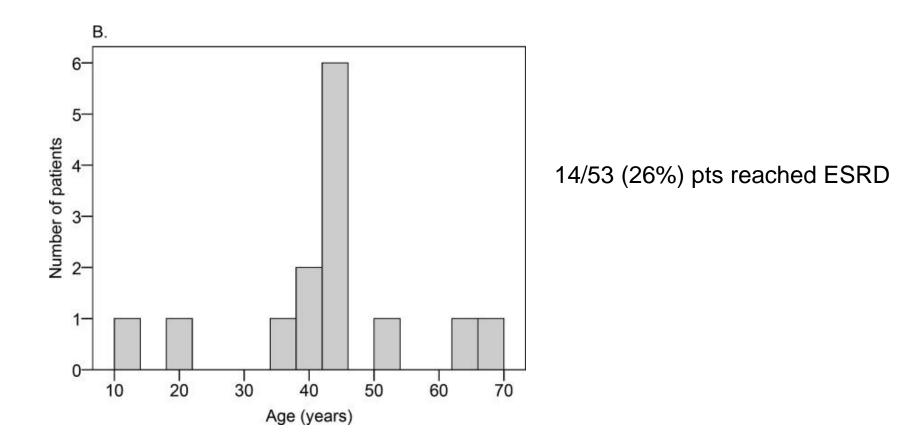
Stone Activity


ſ	# 36 pts (90)%) had stones		
	# Nb of stor	ne episodes before	diagnosis	
	Ο	10%		
	1 - 2	42.5%		
	3 -5	25%		
	>5	22.5%		
# Nb Surgical procedures before diagnosis				
	0	57,5%	Chaole way as lithetrines (200/
	1-2	30%	Shock waves lithotripsy Ureteroscopy	30% 12,5%
	3-5	10%	Percutaneous nephrolithotomy Surgery	7,5% 12,5%
	>5	2,5%	Nephrectomy	2,5%

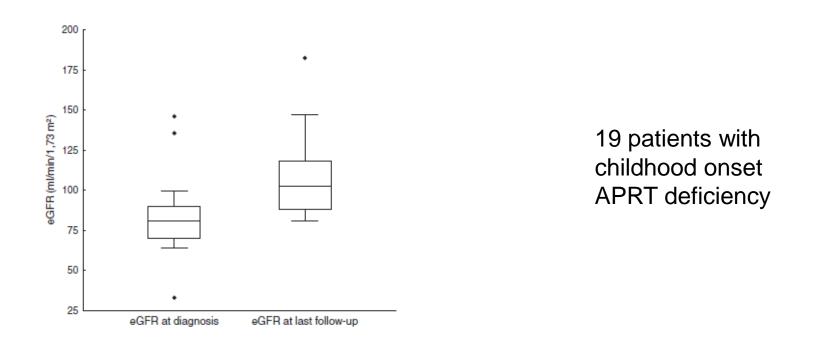
Renal function at diagnosis

AKF	1 pt (2,5%)	
CKD	13 pts (32.5%)	
ESRD	6 pts (15%)	
transplantation	4 pts (10%)	
back to dialysis	2 pts (5%)	

Bollée et al, JASN, 2010


Renal Function at last follow up

40% have CKD 3 or more


Bollée et al, JASN, 2010

Runolfsdottir at al, AJKD, 2016

Outcome in children

At latest follow-up, eGFR was 114 (70–163) and 62 (10–103) mL/min/1.73 m2 in patients who initiated treatment as children and adults, respectively. All 3 patients with CKD stages 3–5 at last follow-up were adults when pharmacotherapy was initiated.

> Harambat et al, Pediatr Nephrol, 2012 Runolfsdottir et al, Pediatr Nephrol, 2019

Treatment?

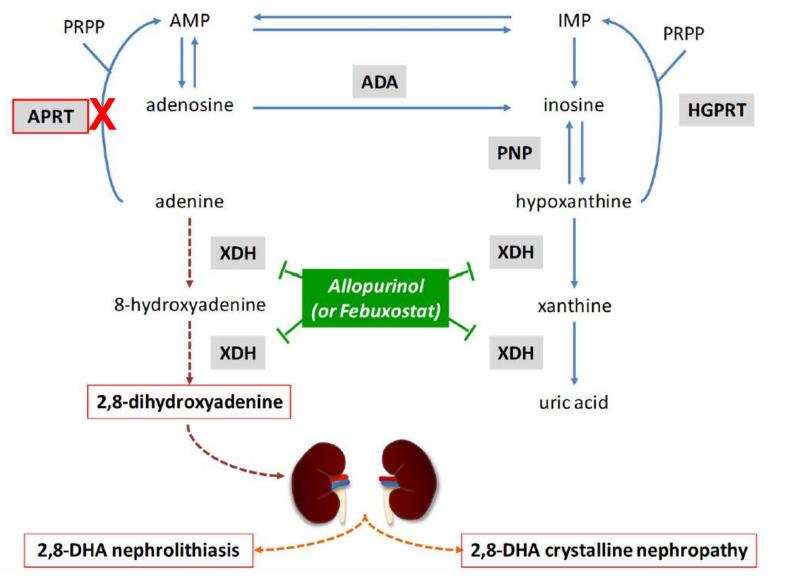
- •Hyperdiuresis
- Alcalinisation
- •Allopurinol
- •Tiopronine
- •Febuxostat

Treatment is efficient

•Hyperdiuresis

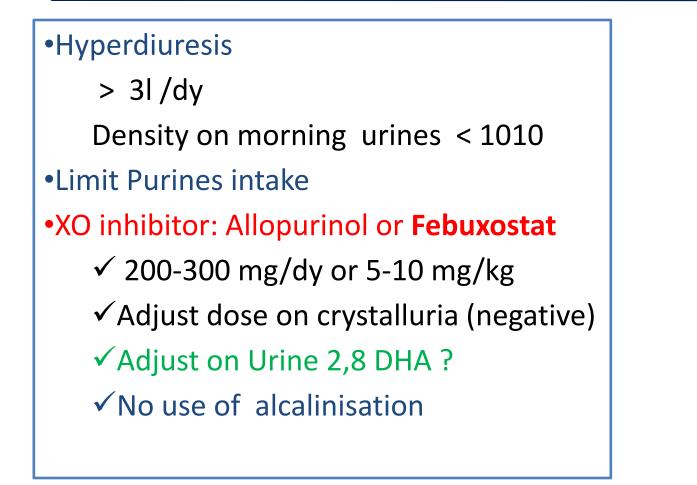
> 31/day

Density on morning urines < 1010


•Limit Purines intake

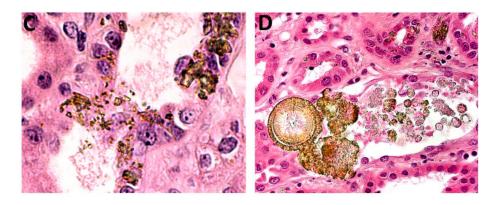
•XO inhibitor: Allopurinol or Febuxostat

Edvardsson et al, Eur J Intern Med, 2018



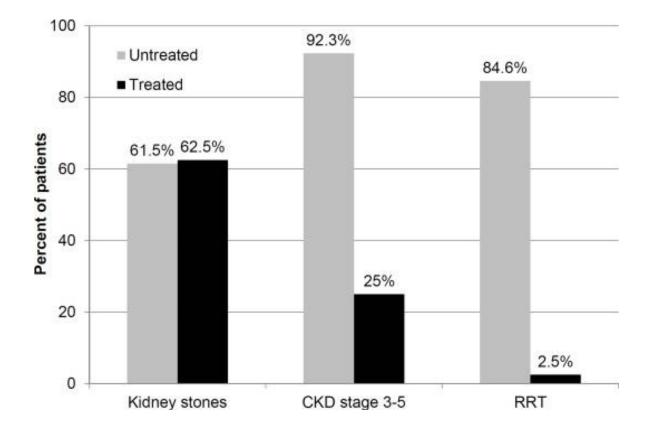
Bollée G et al. CJASN 2012

Treatment is efficient

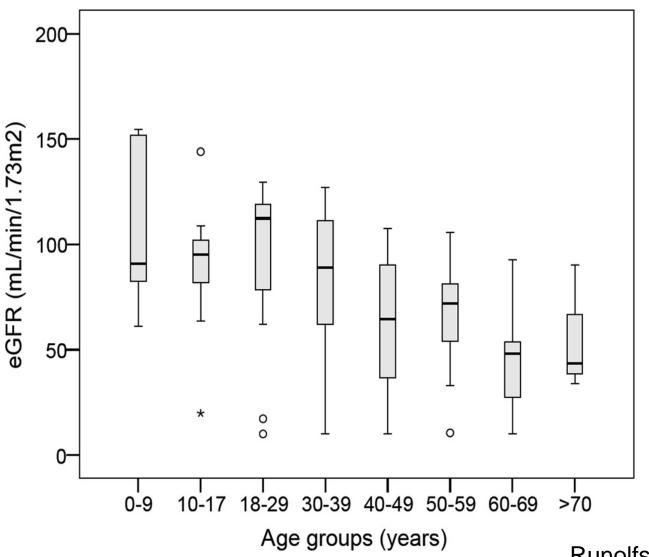


Creatinine decreased and stabilized around 150 µmol/l

...But interruption can be dramatic


Lost of follow up for 2 yrs (lumbar surgical procedures) and Allopurinol discontinued

- Creat 823 µmol/l
- Kidney Biopsy:
 - Crystalline Nephropathy
 - FTIR: 2,8 DHA crystals
 - IF 60%


- TRT : Hyperhydratation + Allopurinol+ Steroids
- Follow up:
 - Creatinine initially decreased # 340 μ mol/l; eGFR 18 ml/mn
 - CKD 5 and kidney graft 2 years later

Effect of treatment on renal function

Runolfsdottir at al, AJKD, 2016

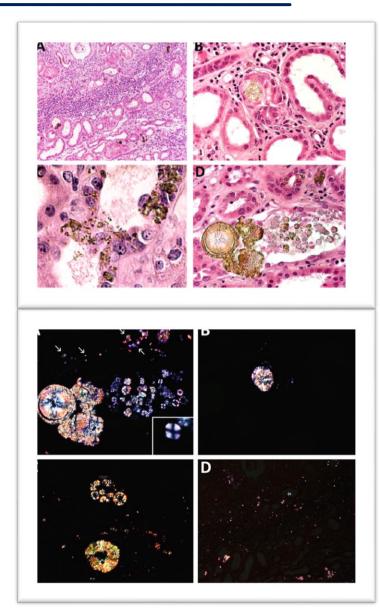
Effect of treatment on renal function

Boxplot of eGFR in different age groups

Median eGFR slope: -0.38 ml/min/yr if treated -5.75 ml/min/yr if not treated

Runolfsdottir at al, AJKD, 2016

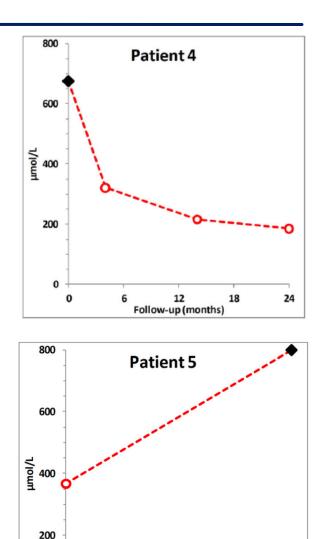
Recurrent 2,8 DHA nephropathy on allograft


Age at ESRD	43 yrs (25-65)	
Order of Renal Tx:	1st: 7	
	2nd: 2	
History of nephrolithiasis: 5/9 (55%)		
Suspected cause of CKD:	Chronic tubulointerstitial nephropathy/NL: 2 Oxalate Nephropathy 1 !! Nephroangiosclerosis 1 Unknown 5	
Time to Diagnosis	Median 5 weeks (1.5 to 312)	
(Post Tx)		
Delay between 1st stone and diagnosis: Median 30 yrs (11-52)		
Serum creat at Diagnosis:	6/9 not on dialysis: mean 264 μmol/l (109-430) 3/9 on dialysis	

Zaidan et al, AJT, 2014

Biopsy Findings and Diagnosis Methods in post transplant 2,8 DHA Recurrence

- Initial diagnosis on the current graft biopsy
 - Oxalate CN 4/9
 - Urate CN 1/9
 - Undetermined 3/9
 - 2,8 DHA 1/9 !!
- Maltese Cross aspect on biopsy: 2/9
- Diagnosis Method
 - Infrared spectroscopy 9/9
 - Crystalluria 4/4
 - APRT activity 0% 7/7
 - Genetic analysis 6/6



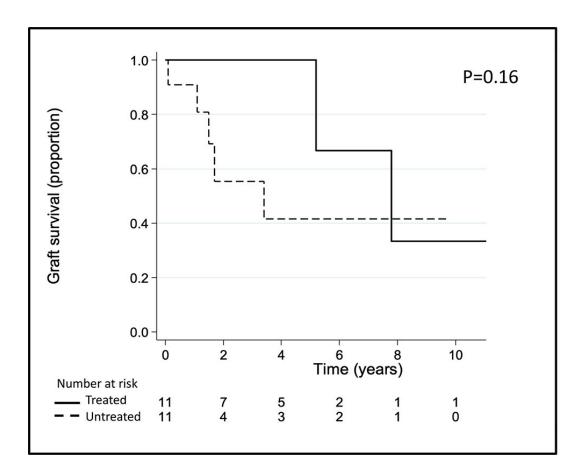
Treatment can be efficient

Hyperdiuresis
> 2 ,5 to 3l /d
Urine Density < 1010
Limit purines intake

•XO inhibitors +++

Follow-up (months)

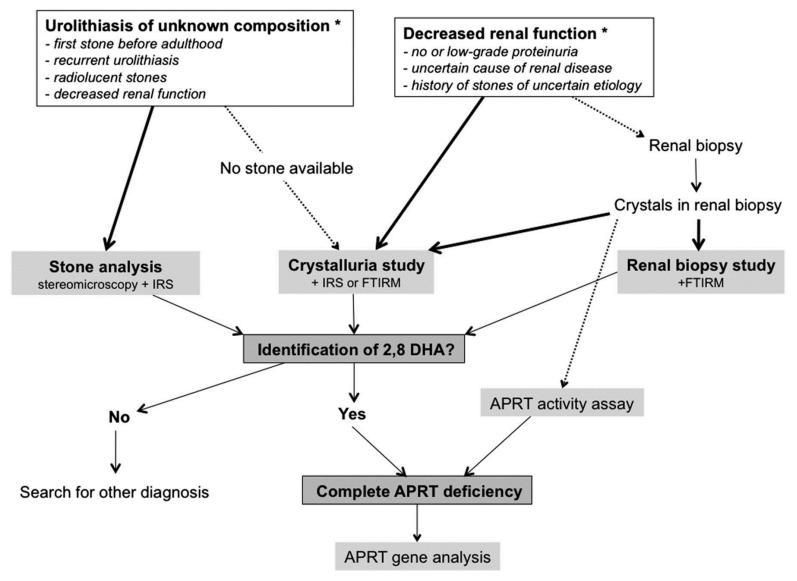
6


0

0

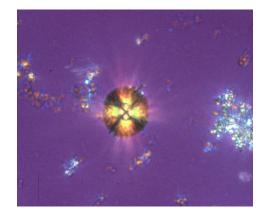
Outcome

- Follow up: median 24 months (6-32)
- Stable 1/ Worsened 1/ Initially improved 7
- Creatinine at last follow up (if not on HD): median 168 µmol/l (105-220)
- Renal outcome
 - Chronic graft dysfunction 5/9
 - Normal graft function 2/9
 - Graft loss 2/9


Outcome according to pretransplant XOR inhibitor treatment

Graft function superior in the XOR inhibitor-treated group at 2 years posttransplant: median eGFR of 61.3 mL/min/1.73 m2 vs 16.2 (p=0.009)

2-year allograft survival 91% and 55%


Recommended diagnostic algorithm for APRT deficiency

Bollée G et al. CJASN 2012

Conclusion

- 2,8-DHA crystalline nephropathy is a rare and underrecognized cause of CKD that can lead to renal failure, ESRD and recurrence in the renal allograft
- The presence of crystals in the renal parenchyma and urine sediment should not be overlooked
- Prompt pharmacologic inhibition of xanthine dehydrogenase may allow the improvement of renal function

Thank you!

21/03/23

25/04/23

16/05/23

Subscribe our Newsletter Or follow us on Twitter @EuRefNetwork

<u>Glycogen storage disease lb and XI, disease</u> <u>mecahnisms and novel treatment</u> Francesco Trepiccione (Naples)

Disorders of renal calcium handling Pascal Houillier (Paris)

Syndromic Ciliopathies (Bardet Biedel) Jens König (ERKNet) & Hélèn Dollfus (ERN-Eye)

