Bardet-Biedl syndrome

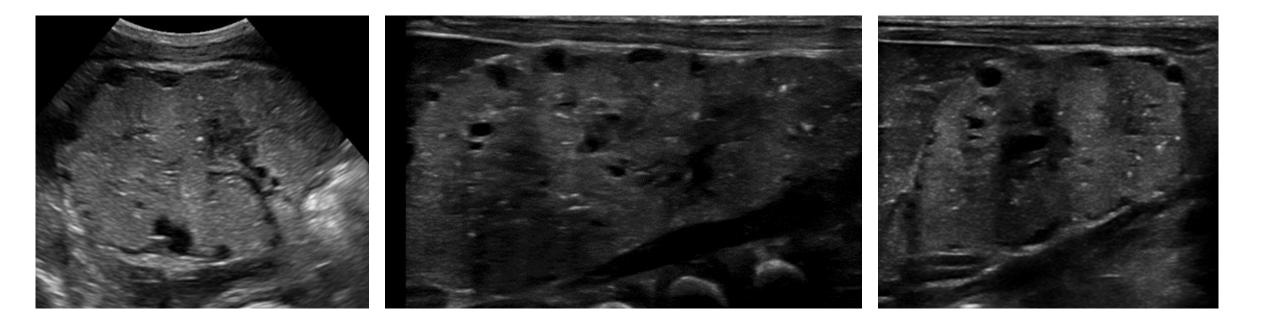
Prof. Hélène Dollfus

Service de Génétique Médicale, Hôpital de Hautepierre,Strasbourg

France

Dr. Jens König Pediatric Children's hospital Münster

Germany


"Referral of the day"

- Early born boy out of 36+0 gestational weeks
 - birth weight 2275 g, length 44 cm
 - APGAR 5/6/10
 - oligoahydramnious since 26th week of gestation
 - polycystic kidneys

- <u>original plan</u>: palliative care owing to an expected lung hypoplasia caused by early oligohydramnious and polycystic kidney disease
- referral after 15 hours of life:
 - no need for ventilation
 - first urine production observed after 22 hours of life, spontanously increasing to 2.5 ml/kg/h

Ultrasound presentation – "most likely ARPKD"

- bilateral enlarged hyperechogenic kidneys: volume 21ml/ 23ml
- blurred medullo-cortical differentiation
- multiple macro- and microcystic lesions in the cortex and medulla

First doubts arising after a few days

- no arterial hypertension
- ultrasound appearance not quite ARPKD-typical
- ...and then there was this additional hint

homozygous truncating variant in BBS12 gene (p.Arg386*)

hexadactyly on right foot

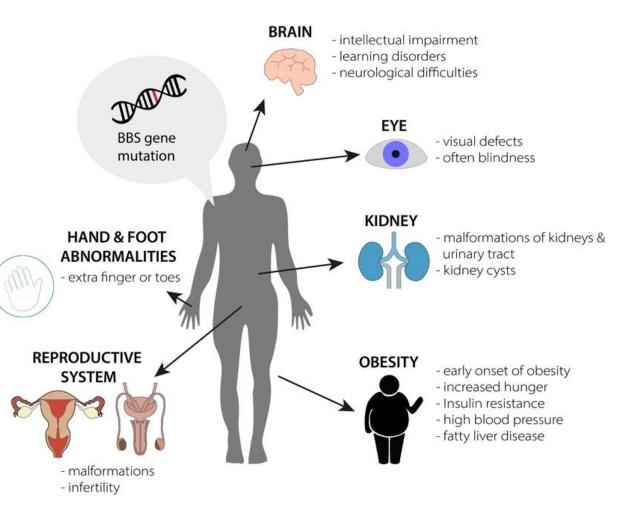
Ali, 2.5 years of age

• CKD IV

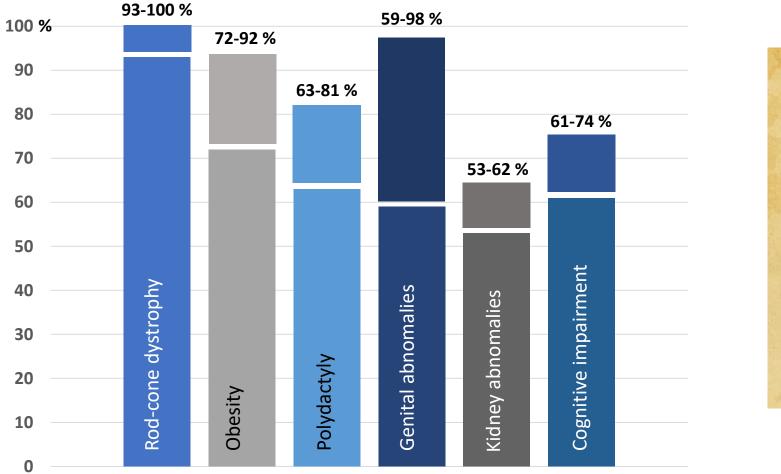
- eGFR 24 ml/min/1.73 m²
- polydipsia of >1500 ml/day
- reduced vision. 0.3-0.4 binocular
- BMI 19.5 kg/m² (+2.2 SDS_{LMS})
- muscular hypotonia
- delayed motoric and speech development

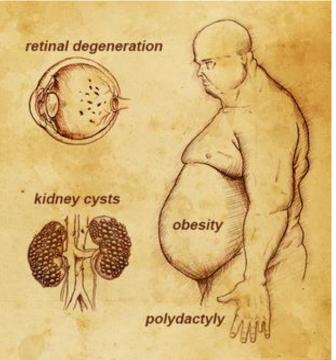
Bardet Biedl syndrome – etiology

- Rare inherited disorder
- Autosomal recessive inheritance
- Affecting multiple organs and systems
- Frequency varies
 - 1:120.000-1:160.000 in North America and Europe *
 - 1:13.500 1:36.000 in Bedouins and mixed Arab population **
 - 1:3.700 in Faroe Islands ***



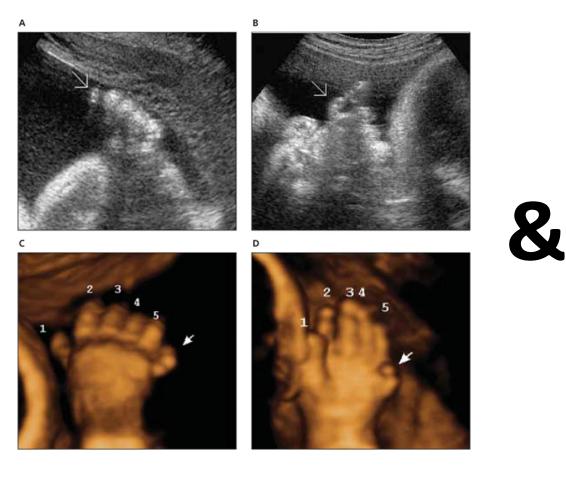
Arthur Biedl (1869-1933) George Bardet (1885-1966)


Clinical diagnosis


- Clinical criteria published by *Beales et al.*
- Diagnosis requires the presence of either at least 4/6 primary features or 3 primary and two secondary features

Primary Diagnostic Features	Secondary Diagnostic Features	Described BBS Features Non Included in the Diagnostic Criteria	
Retinal Degeneration	Strabismus, cataracts, and astigmatism	Cutaneous Dermatoses	
Obesity	Metabolic/endocrine abnormalities (metabolic syndrome, subclinical hypothyroidism, polycystic ovary s.)	Hearing loss	
ostaxial polydactyly Brachydactyly/syndactyly		Asthma	
Renal Anomalies	Anosmia/olfactory dysfunction	Dysregulated immune and hematopoietic systems	
Learning Disabilities	Neurodevelopmental abnormalities (developmental delay, speech delay, epilepsy, behavioral disturbances, ataxia/poor coordination, mild spasticity)	Musculoskeletal abnormalities	
Hypogonadism and Genitourinary Abnormalities	Liver and other gastrointestinal diseases (Hirschsprung disease, inflammatory bowel disease, celiac disease)		
	Cardiovascular and thoraco-abdominal abnormalities		

Frequency of primary features in BBS




Forsythe, Beales, European Journal of Human Genetics (2013) 21, 8–13

Early signs/ suspicion for BBS

prenatal polydactyly

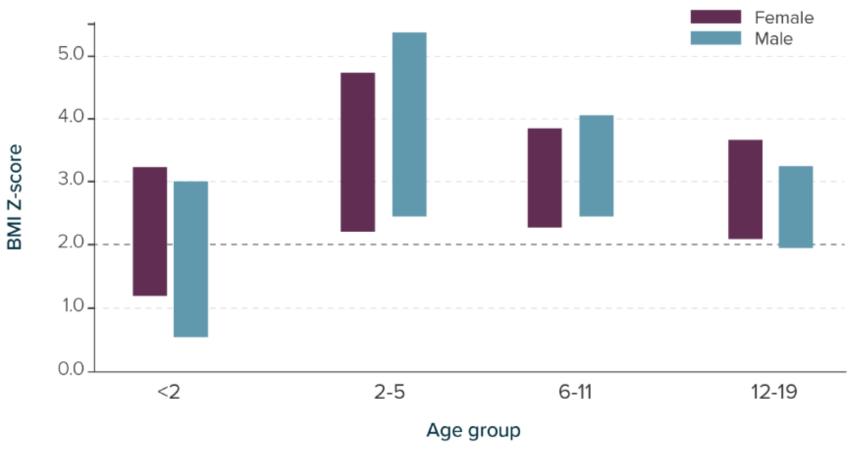
hyperechogenic kidneys +/- cysts

Hun Zun et al.; JUM 2007.26.4.529

Sceletal abnormalities

 polydactyly overall 	63-81%				
all 4 limbs	21%				
 only hands 	8%				
 only feet 	21%				
 brachydactyly 	46%				
 syndactyly 	8%				
(usually 2. &3. toe)					

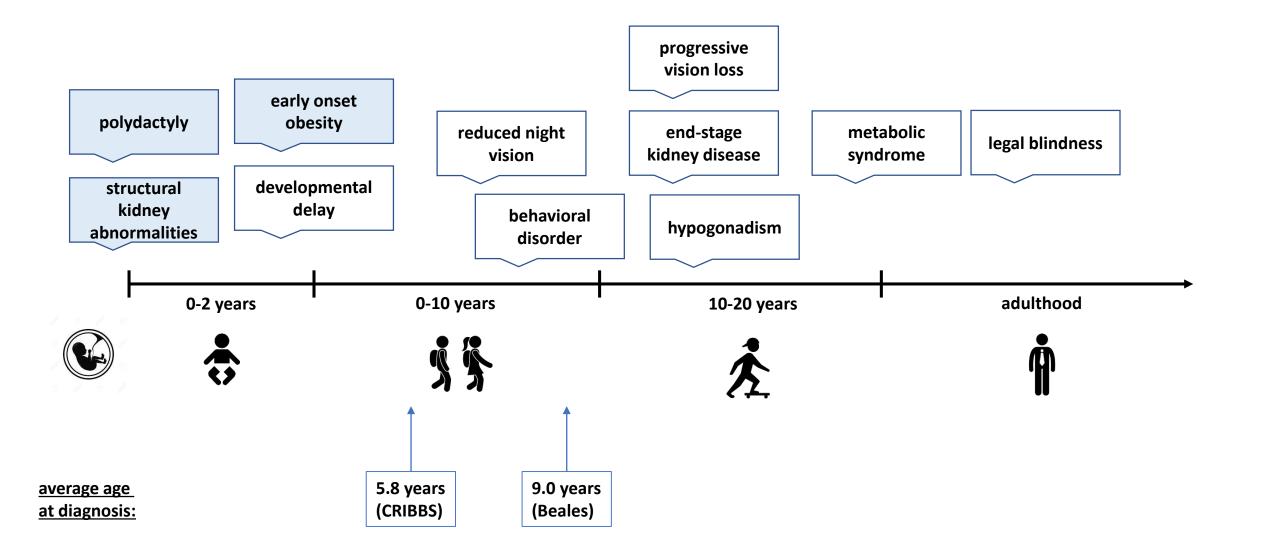
polydactyly

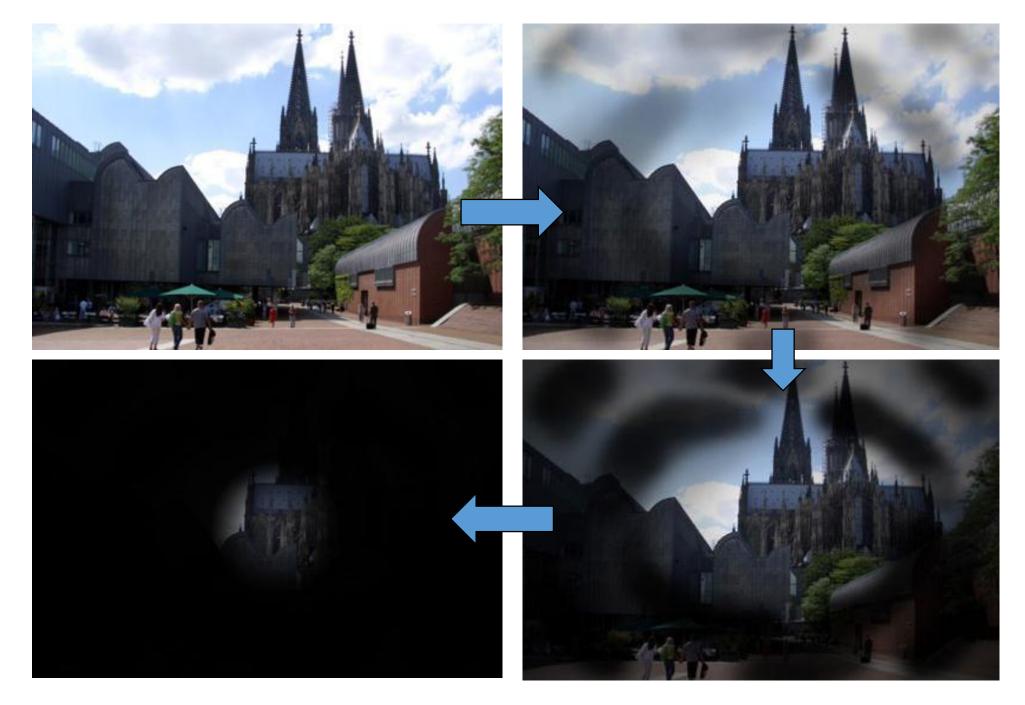


brachydactyly

syndactyly

Early developing obesity



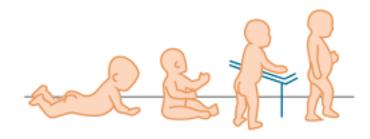

Perzentilenkurven Körperlänge/-höhe (Jungen 0 – 5 Jahre) cm Name 120 Geburtsdatum Datum Größe Datum Größe 115 110 105 Körperlänge im Liegen 100 100 90 85 85 80 75 Höhe des Vaters cm Höhe der Mutter cm kg 35 50 30 45 kg 20 25 20 15 15 10 Körpergewich

Adapted from Pomeroy et al. Pediatric Obesity. 2020.

Full clinical spectrum develops over time

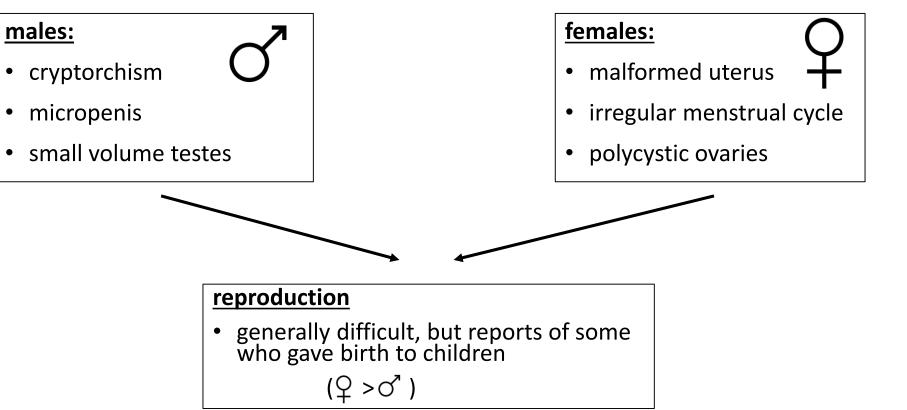
Retinopathy (100%)

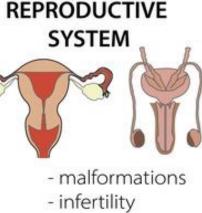
(<u>http://www.pro-retina.de</u> /simulation/retinitis-pigmentosa)

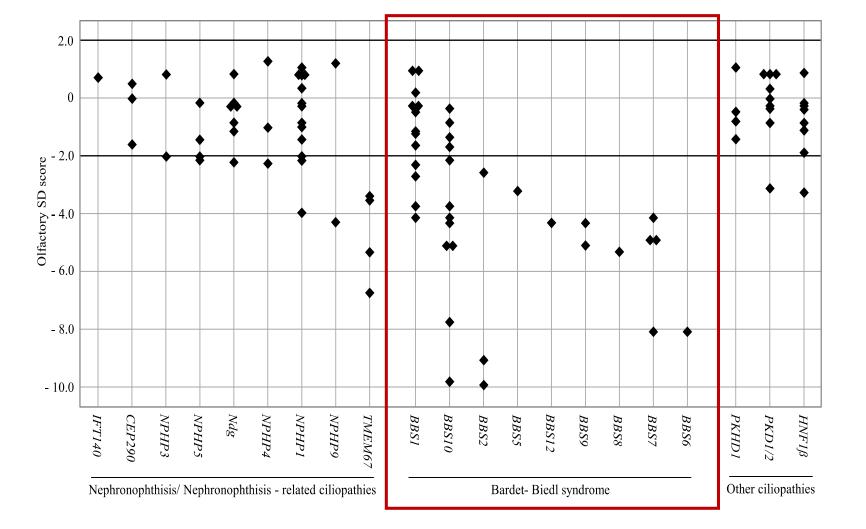

Developmental delay (66%) & behavioral abnormalities (33%)

Developmental delay:

- often global
- sometimes specific for some areas
 - motor
 - language
- speech delay usually responds well to speech therapy


Behavioral abnormalities:

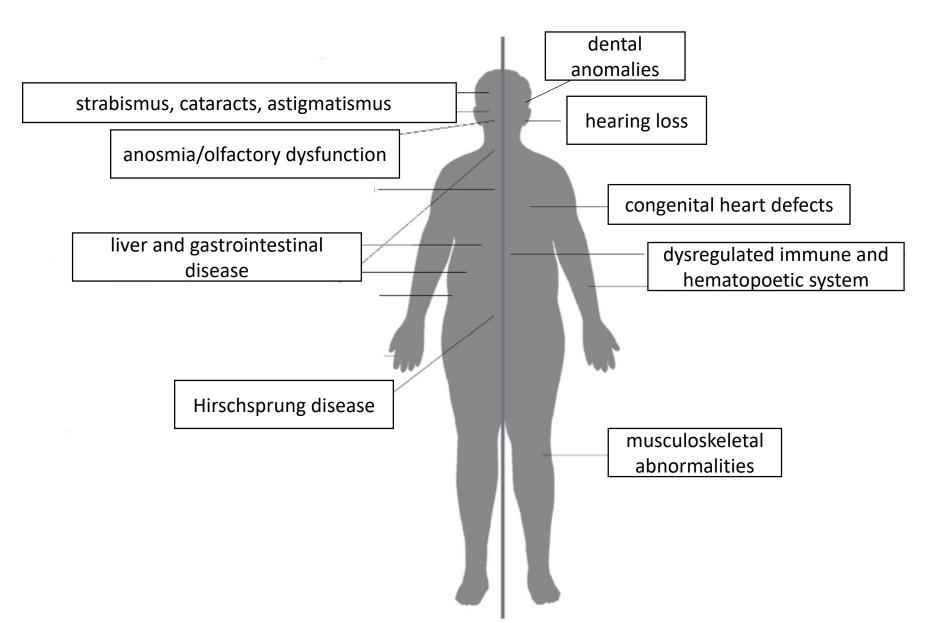

- obsessive, compulsive and ritualic behaviour
- anxiety
- emotional immaturity
- disinhibition
- hyperactivity
- depression



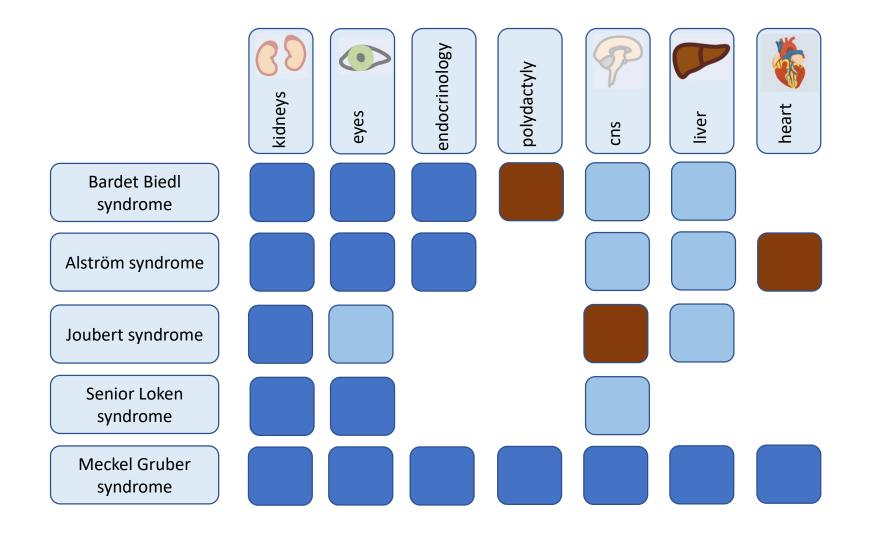
Reproductive system (59%)

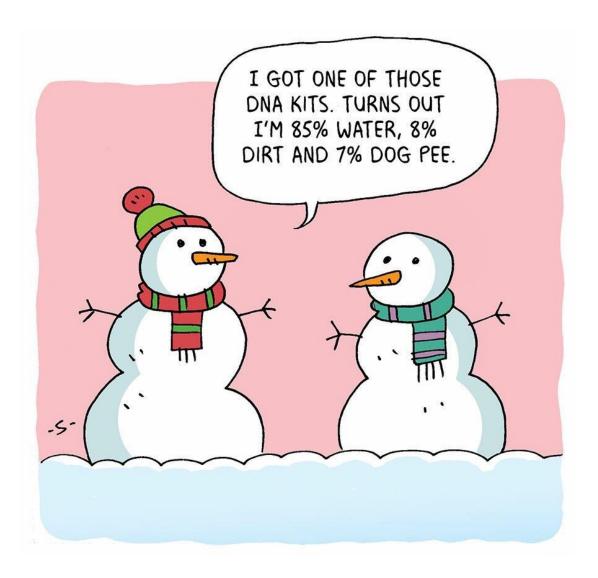
Hyposmia/Anosmia (50%)

ORIGINAL RESEARCH


Systematic evaluation of olfaction in patients with hereditary cystic kidney diseases/renal ciliopathies

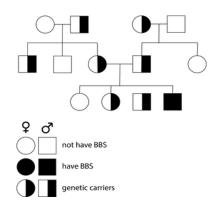
Mareike Dahmer-Heath, ¹ Valentin Schriever, ² Sabine Kollmann, ¹ Carolin Schleithoff, ¹ Andrea Titieni, ³ Metin Cetiner, ⁴ Ludwig Patzer, ⁵ Burkhard Tönshoff, ⁶ Matthias Hansen, ⁷ Petra Pennekamp, ¹ Joachim Gerß, ⁸ Martin Konrad, ¹ Jens König ¹


(J Med Genet. 2020 Sep 11; jmedgenet-2020-107192.)


Secondary features (59%)

Clinical overlap with other syndroms

Genetic confirmation required



Genetic background

variants in up to least 26 BBS genes

Gene	Name	Chromosomal Coordinate	Localization of the Protein in the Cell	Tissue Specificity	Protein Function
BBSI	Bardet-Biedl syndrome I	q 3.2	Cilium and basal body	Low	Component of BBSome complex
BBS2	Bardet-Biedl syndrome 2	16q13	Cilium and basal body	Low	Component of BBSome complex
BBS3/ARL6	Bardet-Biedl syndrome 3/ ADP ribosylation factor like GTPase 6	3q11.2	Cilium, basal body, transition zone and cytosol	Low	GTP-binding protein involved in ciliary trafficking ¹⁴⁶
BBS4	Bardet-Biedl syndrome 4	15q24.1	Cilium and basal body	Low	Component of BBSome complex
BBS5	Bardet-Biedl syndrome 5	2q31.1	Basal body	Low	Component of BBSome complex
BBS6/MKKS	Bardet-Biedl syndrome 6/ MKKS centrosomal shuttling protein	20p I 2.2	Cilium and basal body	Low	Chaperonin like protein assisting BBSome formation
BBS7	Bardet-Biedl syndrome 7	4q27	Cilium and basal body	Low	Component of BBSome complex
BBS8/TTC8	Bardet-Biedl syndrome 8/ tetratricopeptide repeat domain 8	14q31.3	Cilium, IFT and basal body	Low	Component of BBSome complex
BBS9	Bardet-Biedl syndrome 9	7p14.3	Cillium	Low	Component of BBSome complex
BBS10	Bardet-Biedl syndrome 10	12q21.2	Basal body	Low	Chaperonin like protein assisting BBSome formation
BBS11/TRIM32	Bardet- Biedl syndrome II- tripartite motif containing 32	9q33.1	Intermediate filaments	Low	E3 ubiquitin ligase; it promotes degradation of several targets ¹⁴⁷
BBS12	Bardet-Biedl syndrome 12	4q27	Basal body	Low	Chaperonin like protein assisting BBSome formation
BBS13/MKS1	Bardet-Biedl syndrome 13/MKS transition zone complex subunit 1	17q22	Basal body	Low	Component of the tectonic-like complex localized at the transition zone of primary cilium ¹⁴⁸
BBS14/CEP290	Bardet-Biedl syndrome I4/centrosomal protein 290	12q21.32	Basal body and centrosome	Low	Centrosomal protein involved in primary cilium formation ¹⁴⁹
BBS15/WDPCP	Bardet-Biedl syndrome I 5/WD repeat containing planar cell polarity effector	2p15	Cytosol, axoneme and plasma membrane,	Low	Controls ciliogenesis ¹⁵⁰

Gene	Name	Chromosomal Coordinate	Localization of the Protein in the Cell	Tissue Specificity	Protein Function
BBS16/SDCCAG8	Bardet-Biedl syndrome 16/SHH signaling and ciliogenesis regulator SDCCAG8	lq43-q44	Basal body, transition zone and centriole	Low	Involved in ciliogenesis and Sonic Hedgehog signaling pathway
BBS17/LZTFL1	Bardet-Biedl syndrome 17/leucine zipper transcription factor like 1	3p21.31	Cilium and basal body	Mainly in lymphoid tissue	Regulator of BBSome trafficking and Sonic Hedgehog signalling ¹⁵¹
BBS18/BBIP1	Bardet-Biedl syndrome 18/BBSome interacting protein 1	10q25.2	Cytosol	Mainly in testis	Component of BBSome complex
BBS19/IFT27	Bardet-Biedl syndrome 19/intraflagellar transport 27	22q12.3	Cilium, IFT and basal body	Low	Intraflagellar trafficking (IFT-B) component ¹⁵¹
BBS20/IFT172	Bardet-Biedl syndrome 20/ intraflagellar transport 172	2p23.3	Vesicles	Low	Intraflagellar trafficking (IFT-B) component ¹⁵²
BBS21/ CFAP418/ C8orf37	Bardet-Biedl syndrome 21/ cilia and flagella associated protein 418	8q22.1	Basal body and ciliary root	Low	Unknown ¹⁵³
BBS22/IFT74	Bardet-Biedl syndrome 22/ intraflagellar transport 74	9p21.2	Cilium, IFT and basal body	Low	Intraflagellar trafficking (IFT-B) component ¹⁵²
CEP19	Centrosomal protein 19	3q29	Centrosome	Low	Recruits the RABL2B GTPase to the ciliary base and intraflagellar transport (IFT) complex B ¹⁵⁴
NPHPI	Nephrocystin I	2q13	Transition zone	Mainly in skeletal muscle	Cell-matrix signaling at focal adhesions ¹⁵⁵
SCAPER	S-phase cyclin A associated protein in the ER	15q24.3	Endoplasmic reticulum and ciliary tip	Low	Ciliary dynamics and disassembly ¹⁵⁴
SCLTI	Sodium channel and clathrin linker I	4q28.2	Centriole	Low	Component of distal appendages which anchor the cilium to the plasma membrane, involved in ciliogenesis ¹⁵⁷

- *BBS1-BBS18* account for 70-80% of cases
- *BBS1, BBS2* and *BBS10* make up for 50% in western countries

Genetic background

Percentage of Reported Mutations B8S18 0,18% **BBS17** 88519 BBS15 0.18% BBS13 BBS14 _0.4% 196 1% BBS12 88511 11% 0.19% 17% 8853 8859 6% 8855 496 8857 8856 10% 6%

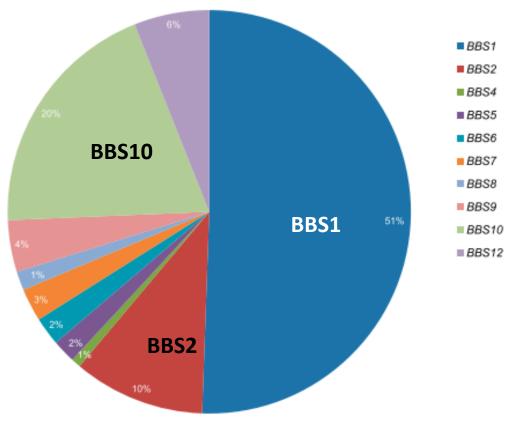

BBS1, BBS2 and BBS10 most frequently effected

Table 2. Number of reported mutations in BBS genes causing BBS phenotypes

			Type of mutation			
BBS gene	OMIM	Reported mutations	Missense/ nonsense	Splicing	Deletions and insertions	Complex rearrangements
BBS1	209901	76	37	19	18	2
BBS2	606151	70	42	13	15	_
ARL6	608845	16	11	2	3	_
BBS4	600374	35	19	5	11	_
BBS5	603650	20	12	2	6	_
MKKS	604896	53	44	1	8	_
BBS7	607590	31	16	4	10	1
TTC8	608132	15	4	5	6	-
PTHB1	607968	34	16	6	11	1
BBS10	610148	87	53	1	43	-
TRIM32	602290	1	1	_	_	_
BBS12	610683	57	36	-	21	-
MKS1	609883	4	3	_	1	_
CEP290	610142	4	1	-	3	_
WDPCP	613580	2	1	1	_	-
SDCCAG8	613524	14	5	2	7	-
LZTFL1	606568	3	2	-	1	-
BBIP1	613605	1	1	-	-	-
IFT27	615870	1	1	-	-	-

Khan SA, et al. Clin Genet. 2016 Jul;90(1):3-15.

Dominating genotypes: BBS1, BBS10, BBS2

350 BBS patients from the UK (2010-2014)

54% male ٠

BBS1

BBS2 BBS4

BBS5 BBS6

BBS7 BBS8

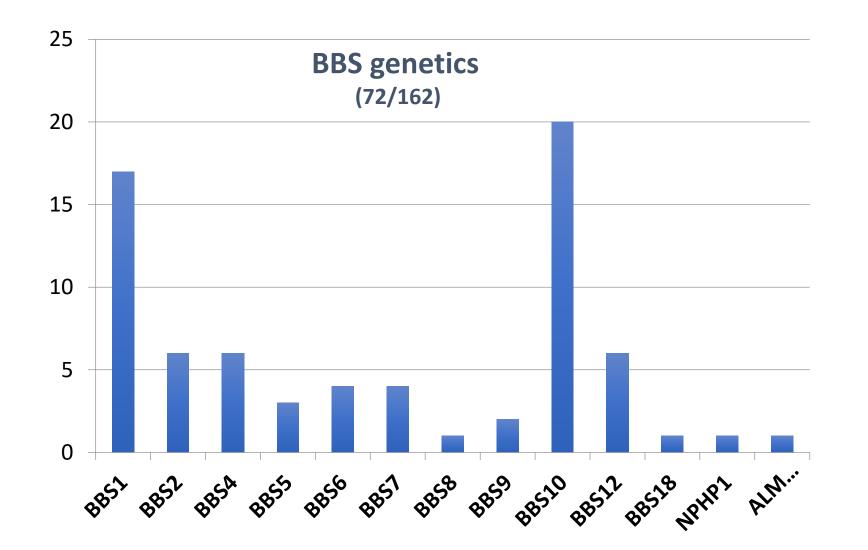
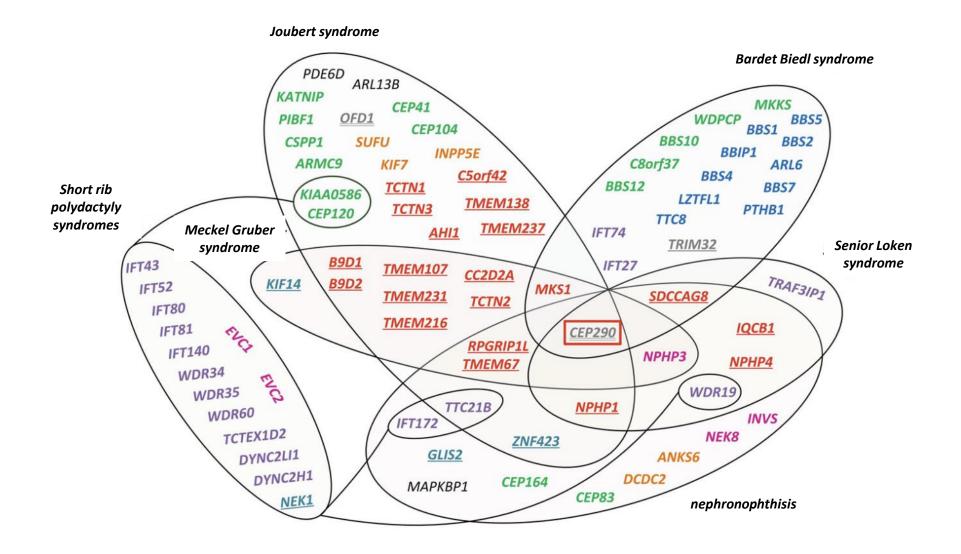
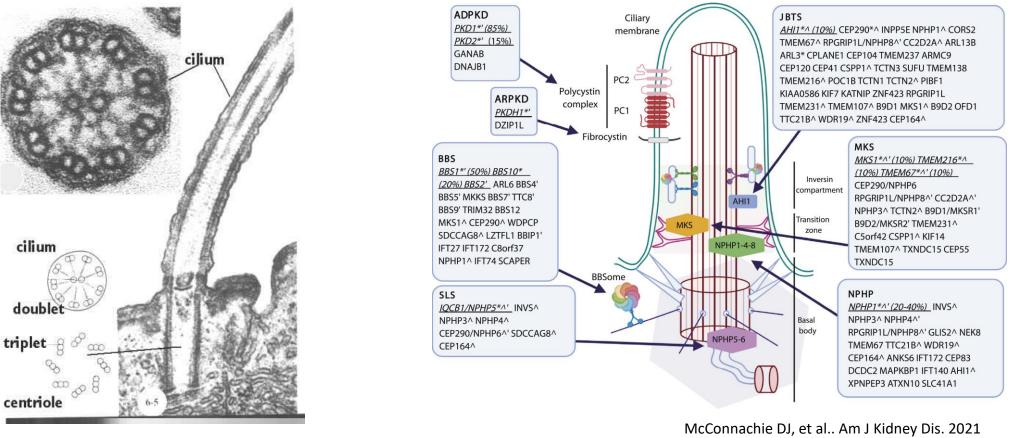

- 46% female •
- genetic diagnosis in 256/350 patients ٠

Figure 1. The BBS1 genotype predominates in the UK population of patients with Bardet-Biedl syndrome followed by mutations in BBS10 and BBS2. Distribution of genotypes.


Forsythe E et al. J Am Soc Nephrol. 2017 Mar;28(3):963-970.

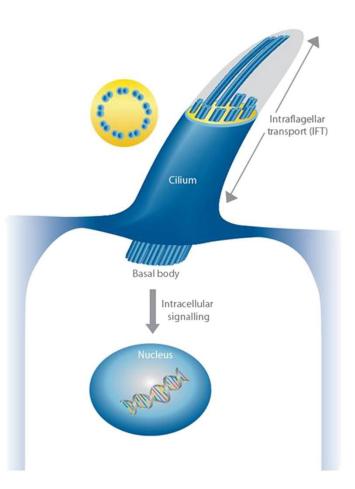
German NEOCYST cohort



Also significant genetic overlap with other complex syndromes

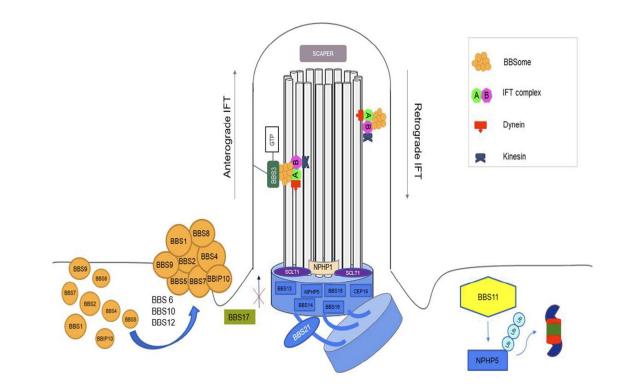
BBS – a model of non-motile ciliopathy

It has been shown that the genes involved in BBS encode proteins, that are responsible for the function or development of cilia.



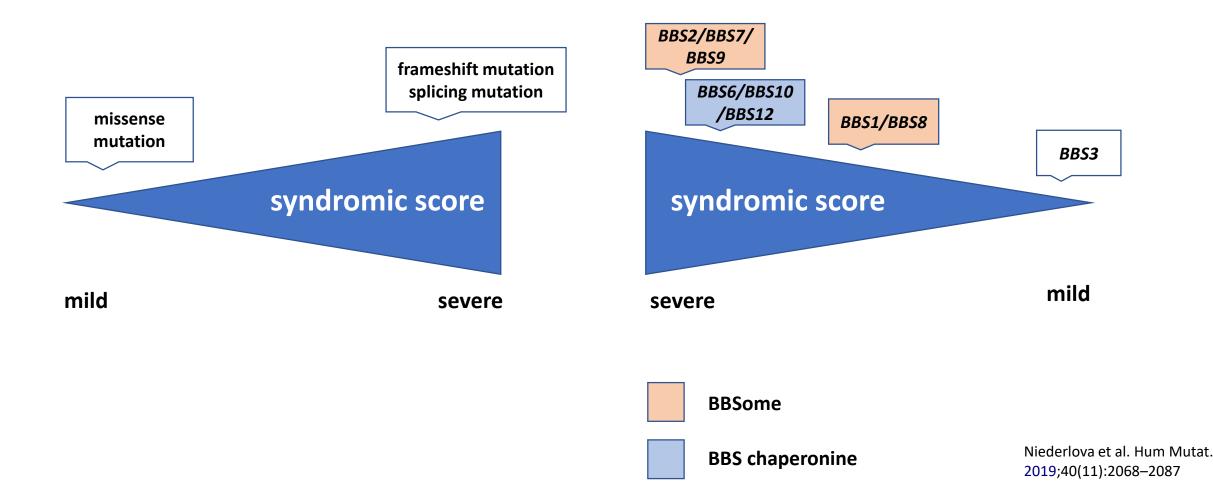
Mar;77(3):410-419.

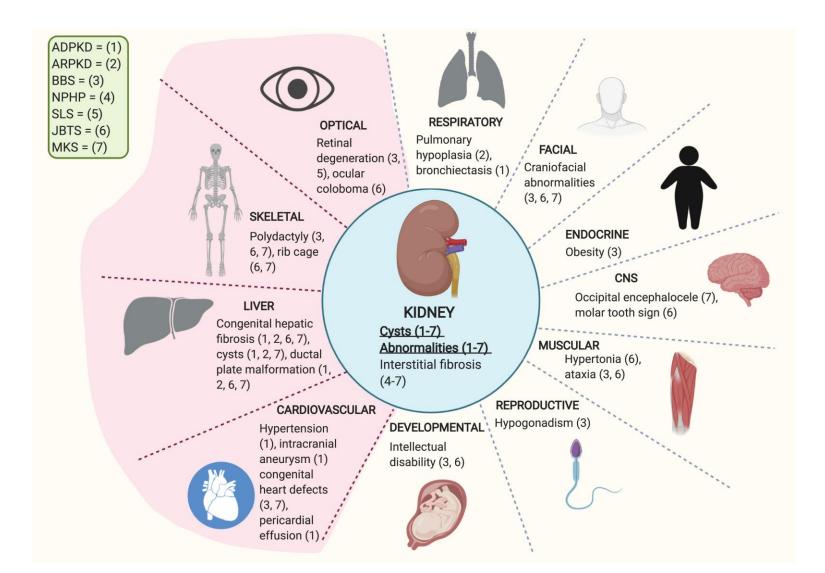
Physiological role of primary cilia (PC)


- PC transfer different stimuli from the extracellular milieu into the cell
- PC play a crucial role in several vital cellular functions including
 - cell division
 - polarity and
 - Metabolism
- PC structure consists of an microtuble-based axonema surounded by a ciliary membrane
- PC contains >600 proteins
- No evidence of protein synthesis within the cilia, thus...
- ... ciliary proteins need to be transported into and out of the cilium by sophisticated transport mechanims

Melluso A, et al. Ther Clin Risk Manag. 2023 Jan 30;19:115-132.

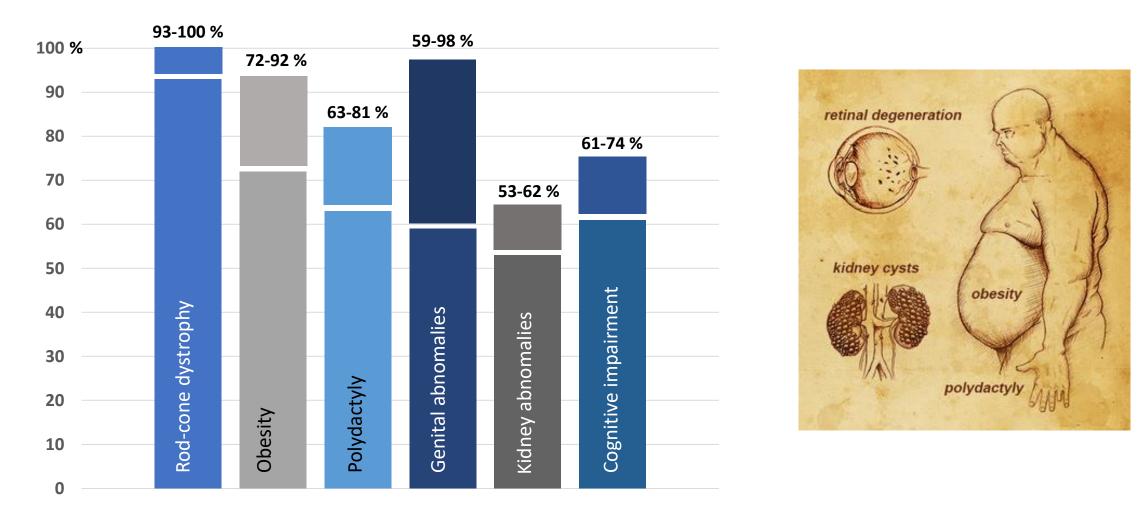
Role of BBS proteins for ciliary integrity


- **BBSome** complex is constituted by BBS1, BBS2, BBS4, BBS5, BBS7, BBS8, BBS9, BBIPI1.
- BBSome regulates molecule traffiking to the ciliary membrane.
- **Chaperone like proteins** BBS6, BBS10 and BBS12 assist in the assembly of the BBSome.
- **BBS3-GTPase** links the BBSome to intraflagellar transport.
- Link to **BBS17** keeps BBSome at the basal body level.
- Retrograde transport from tip to base mediated by IFT-A.
- Antegrade transport (base to tip) mediated by IFT-B complex including **BBS19 and BBS20.**
- **BBS11** favours protein ubiquitination.


- Melluso A, et al. Ther Clin Risk Manag. 2023 Jan 30;19:115-132.
- Novas R et al. FEBS Lett. 2015 Nov 14;589(22):3479-91.

Genotype-phenotype correlation

Metaanalysis using data from 899 individuals from 85 articles



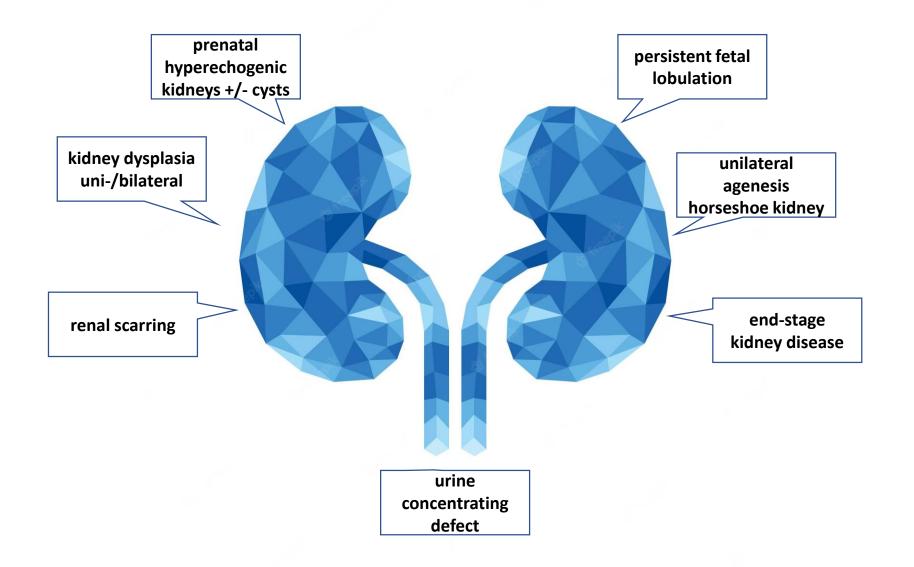
Primary ciliopathies affect several organ systems – and kidney involvement as a typical feature

McConnachie DJ, Stow JL, Mallett AJ. Ciliopathies and the Kidney: A Review. Am J Kidney Dis. 2021 Mar;77(3):410-419.

Kidney involvement as a primary feature in BBS

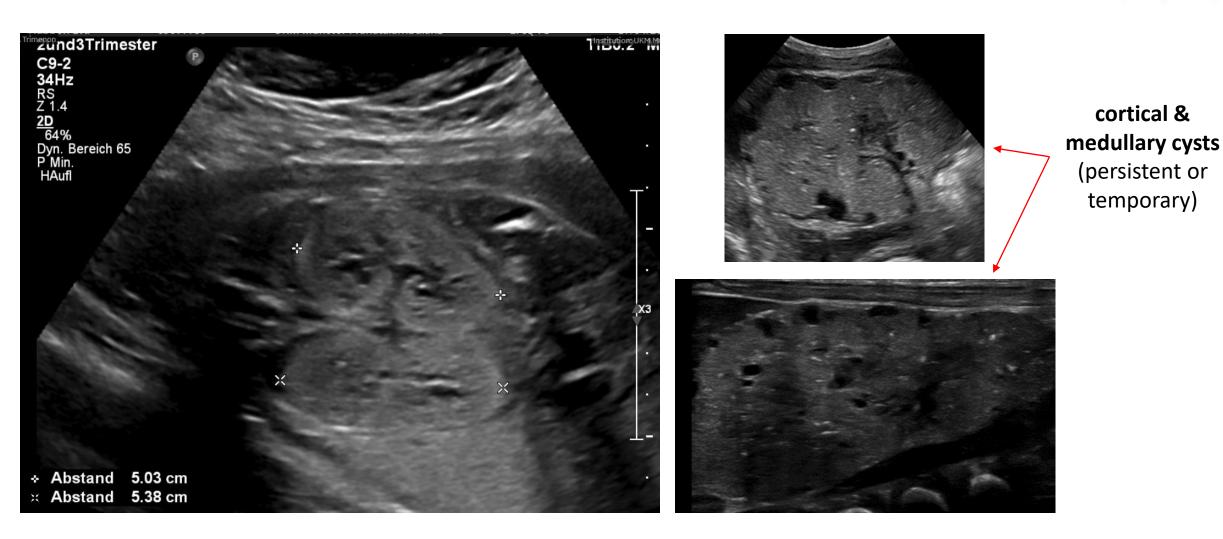
Forsythe, Beales, European Journal of Human Genetics (2013) 21, 8–13

Kidney involvement differs between genotypes

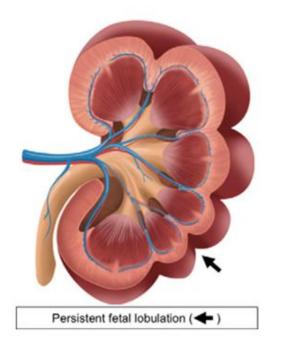

Table 3 Global frequencies of the six BBS primary features found in our cohort. Detailed percentages for each *BBS* gene and data for chaperonin-like genes as a whole are shown

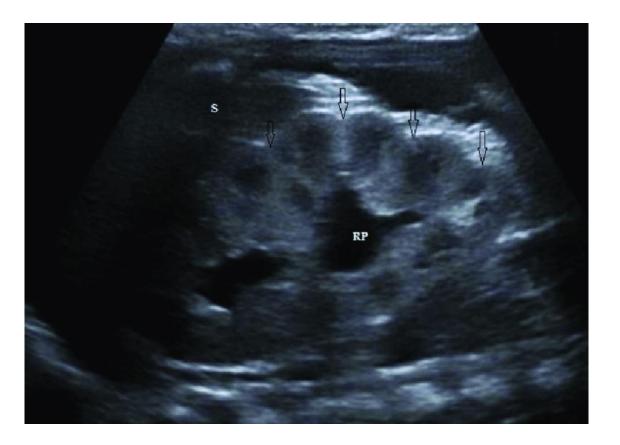
Clinical features	<i>BBS1</i> (n=33)	<i>BBS10</i> (n=9)	<i>BBS12</i> (n=8)	Chaperonin-like BBS genes (n=19)
Retinal dystrophy	100% (33/33)	100% (9/9)	100% (7/7)	100% (18/18)
Obesity	84% (27/32)	88% (7/8)	100% (8/8)	94% (17/18)
Polydactyly	70% (23/33)	100% (9/9)	88% (7/8)	95% (18/19)
Cognitive impairment	53% (17/32)	57% (4/7)	75% (6/8)	71% (12/17)
Urogenital anomalies	25% (4/16)	83% (5/6)	63% (5/8)	69% (11/16)
Renal abnormalities	18% (4/22)	57% (4/7)	60% (3/5)	62% (8/13)

Percentages were calculated based on number of patients for which data were available. 'Chaperonin-like BBS genes' includes *BBS6*, *BBS10* and *BBS12* data. BBS, Bardet-Biedl syndrome.


Castro-Sánchez S, et al. J Med Genet 2015;0:1–11. doi:10.1136/jmedgenet-2015-103099

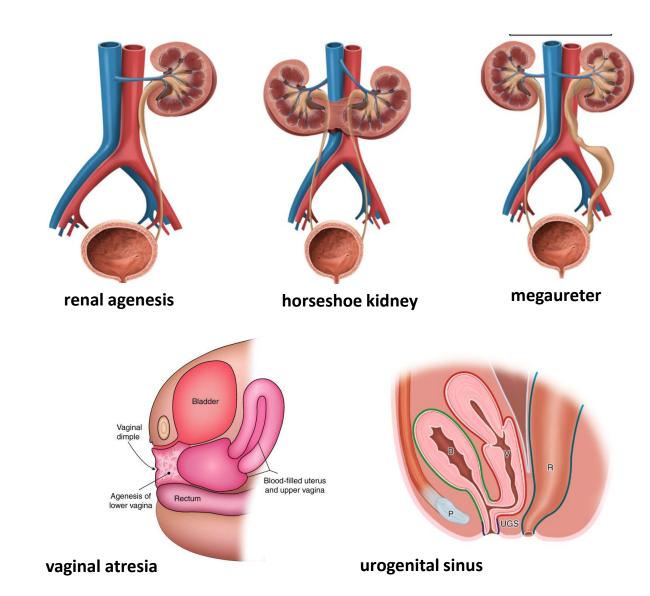
Clinical spectrum of kidney disease in BBS (53-62%)


Prenatal hyperechogenecity +/- parenchymal cysts



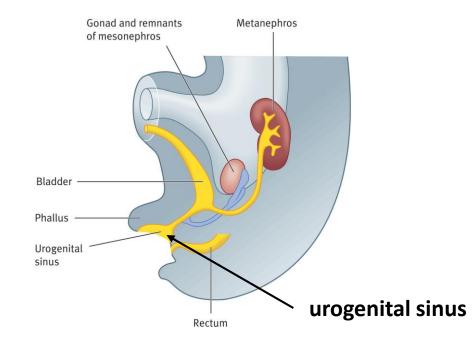
Persistent fetal lobulation of the kidney

 benign kidney abnormality with no consequences for kidney survival



Structural genito-urinary anomalies (CAKUT)

common in BBS:


- parenchymal and calyceal cysts
- hydronephrosis
- renal agenesis
- horseshoe kidney,
- vesicoureteral reflux,
- vaginal atresia,
- urogenital sinus

CLINICAL BRIEF

Bardet-Biedl Syndrome with Urogenital Sinus Presenting with Acute Renal Failure in a Neonate

Nandini K. Bedi · Dhruv Grover

MRCOG Part One Your Essential Revision Guide DOI: https://doi.org/10.1017/CBO9781107587519.012 а

С

b

Renal scarring

Figure 2 – Tc99m-DMSA scan in a child with Bardet Biedl syndrome and focal scarring in the lower pole of the right kidney

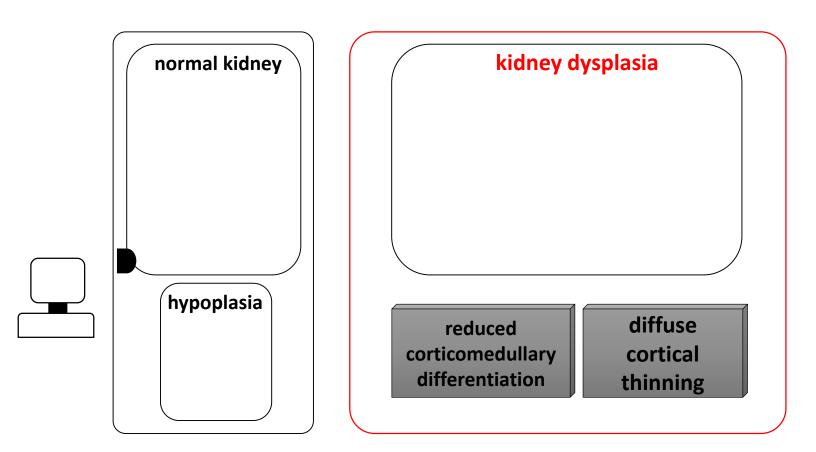
• Focal dysplasia in one kidney without a medical history of recurrent urinary tract infections reported in 4 children (2 male/ 2 female) with BBS

10.1515/prilozi-2015-0048

ISSN 1857-9345 UDC: 616.61-007.1-056.7-053.2

CASE REPORT

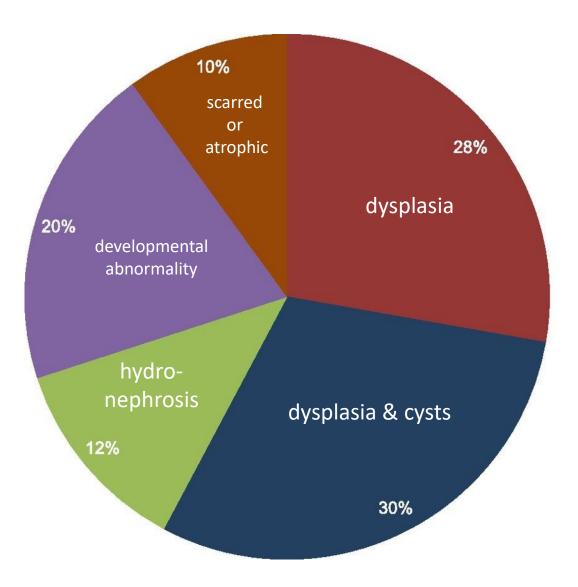
RENAL DYSPLASIA IN BARDET-BIEDL SYNDROME


Nadica Ristoska Bojkovska¹, Lidvana Spahiu², Aleksandra Janchevska¹, Zoran S. Gucev¹, Velibor Tasic¹

Clinical features of the Bardet Biedl patients

Patient	Age*	Gender	Retino-	Polydactyly	Obesity	Learning	Hypogo-	Renal
			pathy			disabilities	nadism	status
1	6	М	+	+	+	+	+	Bill.
								dysplasia
2	3	М	+	+	+	+	+	Bill.
								dysplasia
3	7	F	+	+	+	+	NA	Focal
								scarring
4	6	F	+	+	+	+	NA	Focal
								scarring

Kidney (Hypo-) Dysplasia

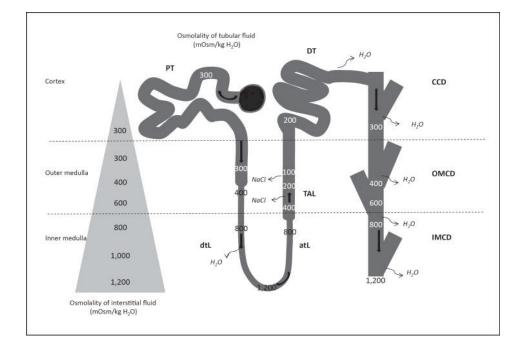


Rodriguez MM. Fetal Pediatr Pathol. 2014 Oct-Dec;33(5-6):293-320.

Kohl et al, NDT 2022

50% of BBS patients with "structural kidney defects"

177 ultrasound reports on BBS patients


- 49% unremarkable
- 51% structural defects

Forsythe E et al. Risk Factors for Severe Renal Disease in Bardet-Biedl Syndrome. J Am Soc Nephrol. 2017 Mar;28(3):963-970.

Urine concentrating defect

- Urine concentrating defect is a common dysfunction in many (renal) ciliopathies
- Precise underlying mechanisms are largely unknown
- Clinically resulting in hyposthenuria, polyuria and polydipsia
- Hyposthenuria is the most common kidney defect in BBS

Urine concentrating defect leading to polyuria/polydipsia – a well known phenomenon

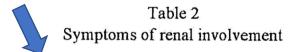
Oct. 12, 1989

1002

THE NEW ENGLAND JOURNAL OF MEDICINE

THE CARDINAL MANIFESTATIONS OF BARDET-BIEDL SYNDROME, A FORM OF LAURENCE-MOON-BIEDL SYNDROME

JANE S. GREEN, M.Sc., PATRICK S. PARFREY, M.D., JOHN D. HARNETT, F.R.C.P.(C.), NADIR R. FARID, M.D., BENVON C. CRAMER, F.R.C.R.(C.), GORDON JOHNSON, M.D., OLGA HEATH, M.Sc., PATRICK J. MCMANAMON, F.R.C.R.(C.), ELIZABETH O'LEARY, AND WILLIAM PRYSE-PHILLIPS, M.D. International Urology and Nephrology 25 (5), pp. 509-514 (1993)

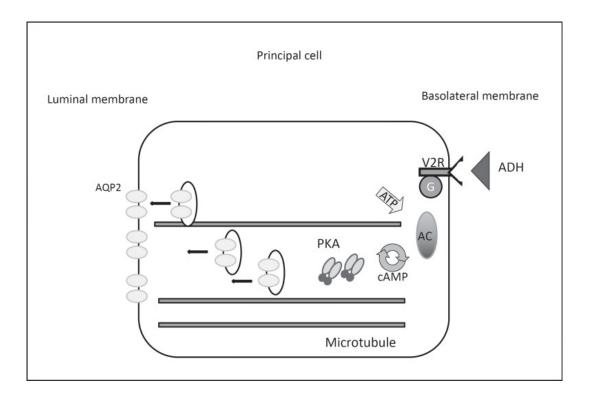

Clinical Aspects of Renal Involvement in Bardet–Biedl Syndrome

A. ANADOLIISKA, D. ROUSSINOV

Department of Paediatric Nephrology and Haemodialysis, Higher Medical Institute, Paediatric University Hospital, Sofia, Bulgaria

Table 5. Renal Abnormalities in Patients with Bardet-Biedl Syndrome.

Abnormality	NO. WITH ABNORMALITY	NO. TESTED	%
Structural			
Abnormal calyces	20	21	95
Communicating cysts or diverticulae	13	21	62
Fetal-type lobulation	20	21	95
Diffuse cortical loss	6	21	29
Focal scarring	5	21	24
Functional			
Hypertension	18	29	62
End-stage renal disease	3	32	9
Partial defect in urine concentration	14	17	82
Renal tubular acidosis			
Incomplete	5	19	26
Complete	1	19	5


Patient	Polydypso- polyuria	Reduced concen- trating ability	Proteinuria	Renal failure
1. D.K.	+	4	·	ESRD
2. M.K.	+	+	+	CRF
3. P.K.	+	+		
4. A.K.	+	+		ESRD

ESRD = End-stage renal disease

CRF = Chronic renal failure

Pathophysiology of urine concentrating defect

- Some studies suggested AQP2 mistraffiking as the putative mechanism of hyposthenuria in BBS.
- Reduced urinary uromodulin excretion in BBS also suggested a pathophysiologic link of the thick ascending limb (TAL)

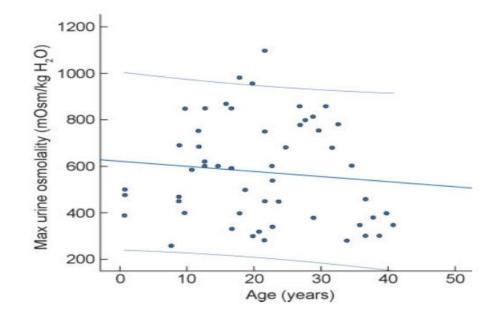
Zacchia M et al. Kidney Dis 2017. Jul;3(2):57-65.

Urine concentrating defect

Original Article

Clinical Kidney Journal, 2021, vol. 14, no. 6, 1545–1551 doi: 10.1093/ckj/sfaa182 Advance Access Publication Date: 6 December 2020

ORIGINAL ARTICLE


Urine concentrating defect as presenting sign of progressive renal failure in Bardet–Biedl syndrome patients

Miriam Zacchia¹, Francesca Del Vecchio Blanco², Annalaura Torella², Raffaele Raucci¹, Giancarlo Blasio², Maria Elena Onore², Emanuela Marchese^{3,4}, Francesco Trepiccione^{1,5}, Caterina Vitagliano¹, Valentina Di Iorio⁶, Perna Alessandra¹, Francesca Simonelli⁶,

Study in a cohort of 54 Bardet-Biedl individuals				
 41 adults, 13 children 				
• GFR:				
 <90 ml/min/1,73m² 	61%			
 60-90 ml/min/1,73m² 	22%			
• <60 ml/min/1,73m ² 16%				

Zacchia M et al. Clin Kidney J. 2020 Dec 6;14(6):1545-1551. Mean max. Uosm after overnight dehydration = 581.8 +/-215 mOsm/kg.

after excluding patients with eGFR <60 ml/min/1,73m² rate of hyposthenuria 56% (24/43 patients).

ORIGINAL ARTICLE Urine concentrating defect as presenting sign of progressive renal failure in Bardet–Biedl syndrome patients

Miriam Zacchia¹, Francesca Del Vecchio Blanco², Annalaura Torella², Raffaele Raucci¹, Giancarlo Blasio², Maria Elena Onore⁴, Emanuela Marchese^{3,4}, Francesco Trepiccione^{1,5}, Caterina Vitagliano¹, Valentina Di Iorio⁶, Perna Alessandra¹, Francesca Simonelli⁶.

Urine concentrating defect

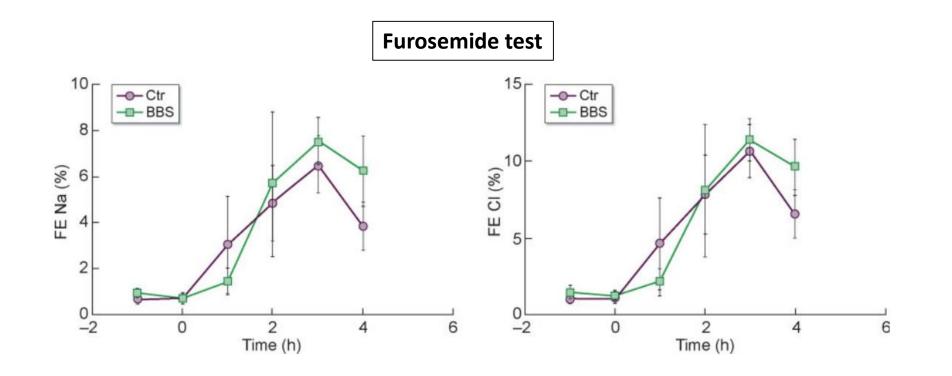
1. Truncating mutations correlated with max-Uosm

Variable	Truncating/mixed mutation	Missense mutation	P-value (Mann–Whitney)
eGFR (ml/min/1.73 m2), mean \pm SD	85.3 ± 41 (<i>n</i> =21)	$132.1 \pm 3(n = 6)$	0.1
Max-Uosm (mOsm/kg), mean \pm SD	490.9 ± 158 (n = 18)	654 ± 181 (n=6)	0.05

Table 4. Mann–Whitney test shows that biallelic truncating and mixed mutation (truncating plus any type of mutations) significantly correlate with max-Uosm

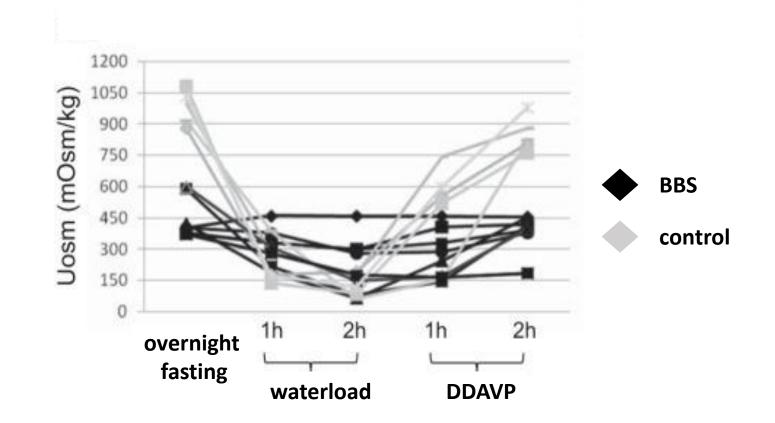
2. Hyposthenuria significantly correlated with **baseline eGFR** as well as decline of eGFR (ΔeGFR)

Variables	Patients with mean $\Delta eGFR < -1.5 mL/min/year$	Patients with mean ∆eGFR >−1.5 mL/min/year	P-value
Total number	19	9	-
Age (years)	22.68 ± 12.5	20.3 ± 5.9	0.5
Baseline eGFR (mL/min/1.73 m ²)	98.9 ± 35.3	113.5 ± 15.1	0.22
ACR (mg/g)	282.3 ± 613	7.7 ± 6.6	0.17
BMI (kg/m ²)	<u>33.17 ± 6.3</u>	28.7 ± 5.2	0.14
U-osm (mOsm/L)	506.3 ± 171	737.8 ± 216.7	<0.005
SBP (mmHg)	121 ± 18	112 ± 18	0.3
DBP (mmHg)	80 ± 9.2	78.6 ± 13	0.8

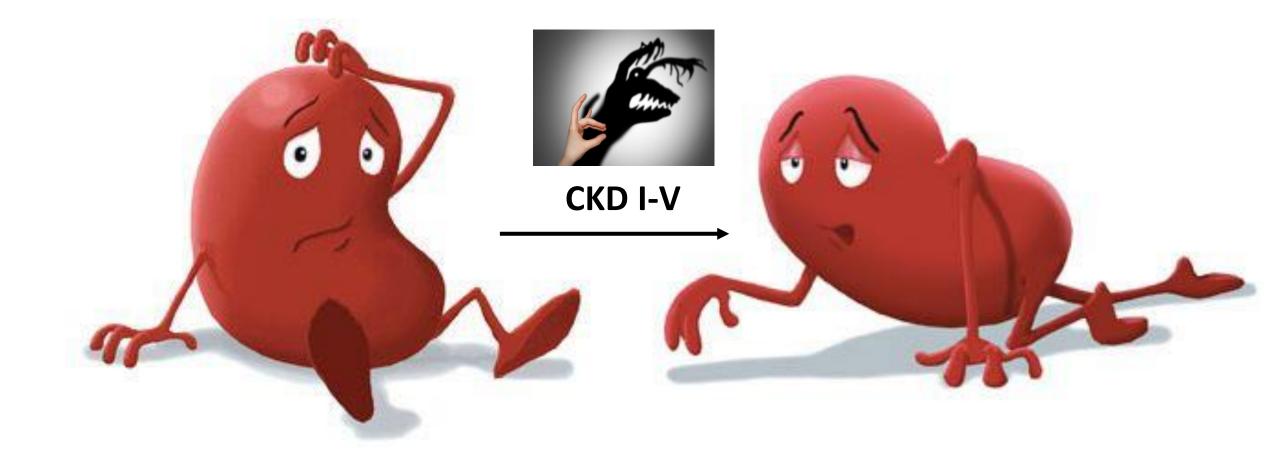

Values presented as mean \pm SD unless stated otherwise.

Patients with more severe reductions did not differ for any basal parameter of the table but max-Uosm.

Pathophysiology of urine concentrating defect


- Normal-high urine aquaporine 2 levels and
- normal NaCl absorption in furosemide test

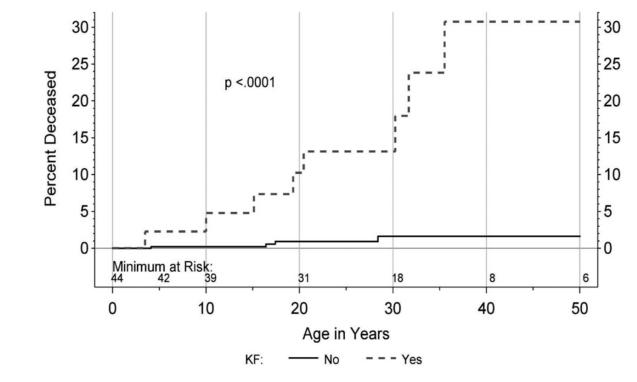
suggested that neither a specific collecting duct nor a thick ascending limb dysfunctions are likely to play a central role in the pathogenesis of hyposthenuria.


Zacchia M et al. Clin Kidney J. 2020 Dec 6;14(6):1545-1551.

BBS patients also showed a deficiency in dilution of urine

Zacchia M et al. Am J Physiol Renal Physiol. 2016 Oct 1;311(4):F686-F694.

Chronic kidney disease



Impact of CKD on BBS overall morbidity

ESKD contributes majorly to overall mortality in BBS patients.

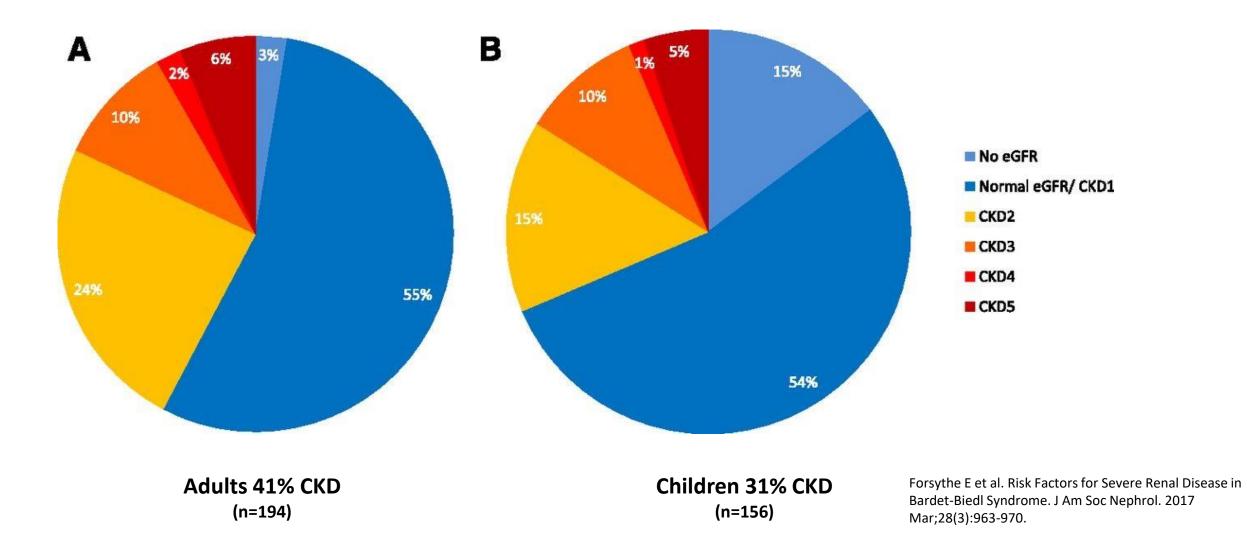

- median survival of BBS patients = 63 years
- 25% die before the age of 44 years
- 72% die because of renal impairment

Table 3 Causes of Death of BBS Patients			
Age at Death (Years)	Primary Cause of Death	Source	
40, 48, 50, 53, 54	Myocardial infarction	Moore et. Al (2005) ⁴ ; Riise (1996) ¹¹⁴	
67	Valvulopathy	Riise (1996) ¹¹⁴	
63, 37	Cerebrovascular disease	Moore et. Al (2005) ⁴ ; Riise (1996) ¹¹⁴	
19, 27, 53, 35, 60, 24, 37	Renal disease	Moore et. Al (2005) ⁴ ; Riise (1996) ¹¹⁴	
63	Renal carcinoma	Moore et. Al (2005) ⁴	
62	Septicemia secondary to urinary tract infection	Moore et. Al (2005) ⁴	
1.5	Hirschsprung disease	Moore et. Al (2005) ⁴	
45	Gastro-intestinal hemorrhage after colonic resection	Moore et. Al (2005) ⁴	
32, 34	Embolism/thrombosis	Moore et. Al (2005) ⁴ ; Riise (1996) ¹¹⁴	
52	Aspiration pneumonia (seizure due to a meningioma)	Moore et. Al (2005) ¹¹⁴	

Melluso A, et al. Ther Clin Risk Manag. 2023 Jan 30;19:115-132. Meyer JR, et al. Clin Genet. 2022 Apr;101(4):429-441.

Overall CKD in BBS patients (n=350)

Age at diagnosis of CKD in pediatric BBS

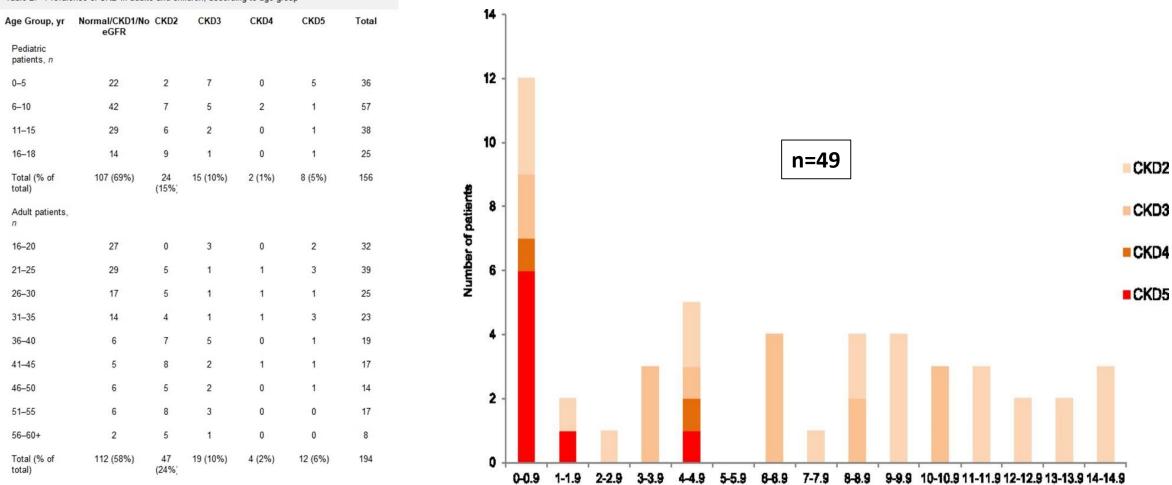
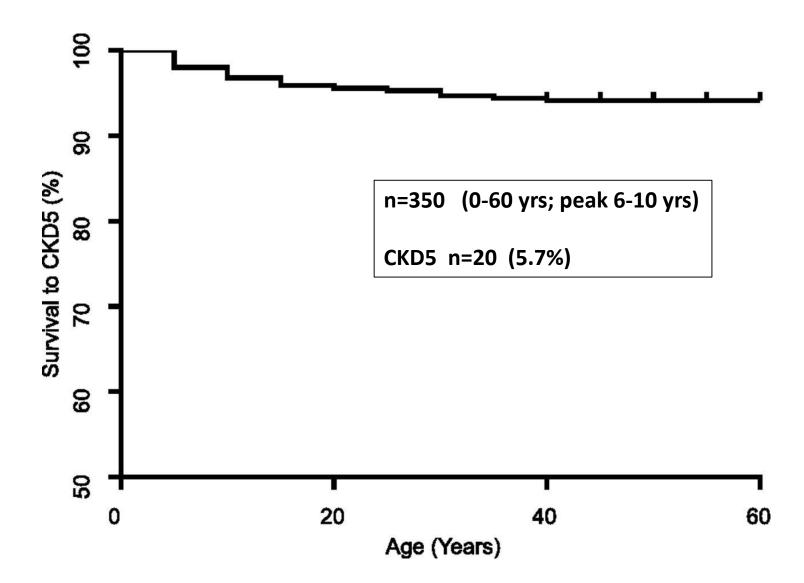
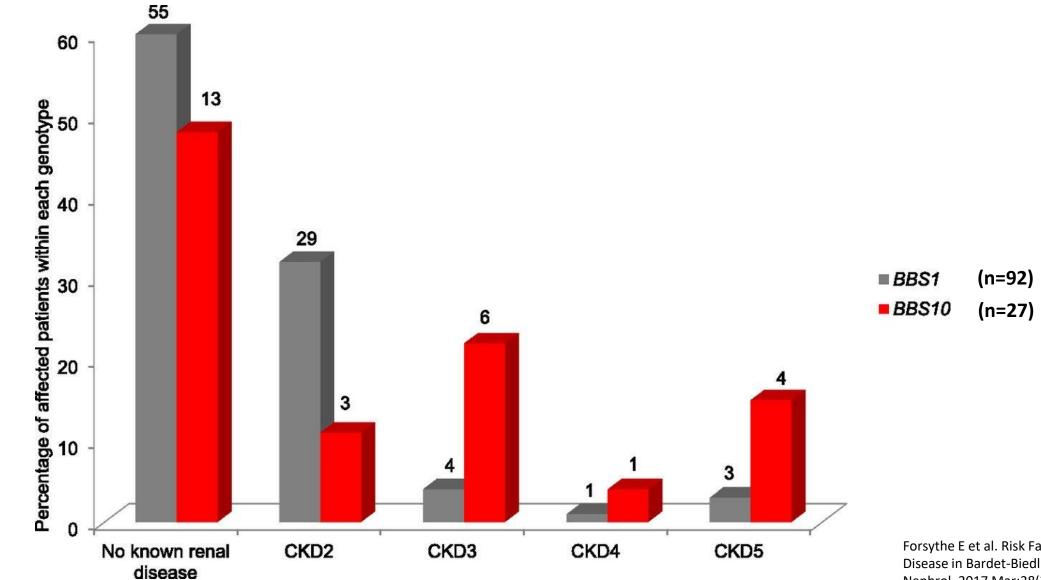



Table 2. - Prevalence of CKD in adults and children, according to age group


Age group (years)

Kidney survival

Forsythe E et al. Risk Factors for Severe Renal Disease in Bardet-Biedl Syndrome. J Am Soc Nephrol. 2017 Mar;28(3):963-970.

BBS10 with a more severe kidney phenotype compared to BBS1

Forsythe E et al. Risk Factors for Severe Renal Disease in Bardet-Biedl Syndrome. J Am Soc Nephrol. 2017 Mar;28(3):963-970.

Type of mutation rather than affected gene determine the risk for severe kidney disease

Table 3. Univariable logistical regression analysis of risk factors for severe renal disease (eGFR<45 ml/min per 1.73 m²) in adults with known common genotypes

Diele Feeter		Confiden	Confidence Interval	
Risk Factor	Odds Ratio	2.5%	97.5%	P Value
Genetic factors				
Genotype (n=154)				
BBS1 mutation (n=90)	(Reference)			
BBS2 mutation (n=22)	4.4	1.28	15.19	0.02 ^a
BBS9 mutation (n=6)	2.4	0.12	17.74	0.46
BBS10 mutation (n=26)	7.4	2.49	23.32	<0.01 ^a
BBS12 mutation (n=10)	5.9	1.08	28.39	0.03ª
Mutation type (<i>n</i> =149)				
Missense/missense (n=76)	(Reference)			
Truncating/truncating (<i>n</i> =40)	11.4	3.9	41.8	<0.01 ^a
Missense/truncating (n=33)	6.3	1.5	28.6	0.01ª
Diabetes (n=137)	0.62	0.14	0.99	0.47
Hypertension (<i>n</i> =137)	5.43	2.21	14.29	<0.01 ^a
Body mass index (n=93)	1.04	0.96	1.10	0.32
Age (n=154)	1.02	0.99	1.96	0.15

Meyer JR, et al. Clin Genet. 2022 Apr;101(4):429-441.

^aStatistically significant result.

Genotype-phenotype correlation

In contrast in a French cohort > 16 years of age (n=33) *BBS6, BBS10* and *BBS12* (chaperone like proteins) genotype associated with a "more severe renal disease" (CKD 2-3).

	otype-phenotype relationship; B Mutations in BBS1		0
Signs/Symptoms	through BBS11 Gene (Excluding BBS6 and BBS10) $(n = 20/33)$	Mutations in BBS6, BBS10, or BBS12 Gene $(n = 10/33)$	Unknown $(n = 3/33)$
CKD (stages 2 and 3) (<i>n</i> = 12/33)	15% (3/20)	70% (7/10)	66% (2/3
Proteinuria ($n = 10/30$)	25% (5/20)	20% (2/10)	100% (3/3
Abnormal urine concentration (n = 19/30)	55% (11/20)	70% (7/10)	33% (1/3
Renal cysts ($n = 6/26$)	20% (4/20)	20% (2/10)	0% (0/3
Caliectasis ($n = 13/26$)	35% (7/20)	50% (5/10)	33% (1/3
Hypertension ($n = 10/28$)	25% (5/20)	20% (2/10)	100% (3/3
Diabetes $(n = 2/33)$	10% (2/20)	0% (0/10)	0% (0/3
Dyslipidemia ($n = 17/32$)	45% (9/20)	50% (5/10)	100% (3/3
Obesity $(n = 23/33)$	60% (12/20)	80% (8/10)	100% (3/
Metabolic syndrome $(n = 13/29)$	35% (7/20)	40% (4/10)	66% (2/
LVH $(n = 5/29)$	5% (1/20)	10% (1/10)	100% (3/

BBS6 BBS12

> Chaperone like BBS proteins

CKD stage 2: eGFR <90 ml/min per 1.73 m² and markers of kidney damage (proteinuria, hematuria, or morphological abnormalities). CKD stage 3: eGFR <60 ml/min per 1.73 m².

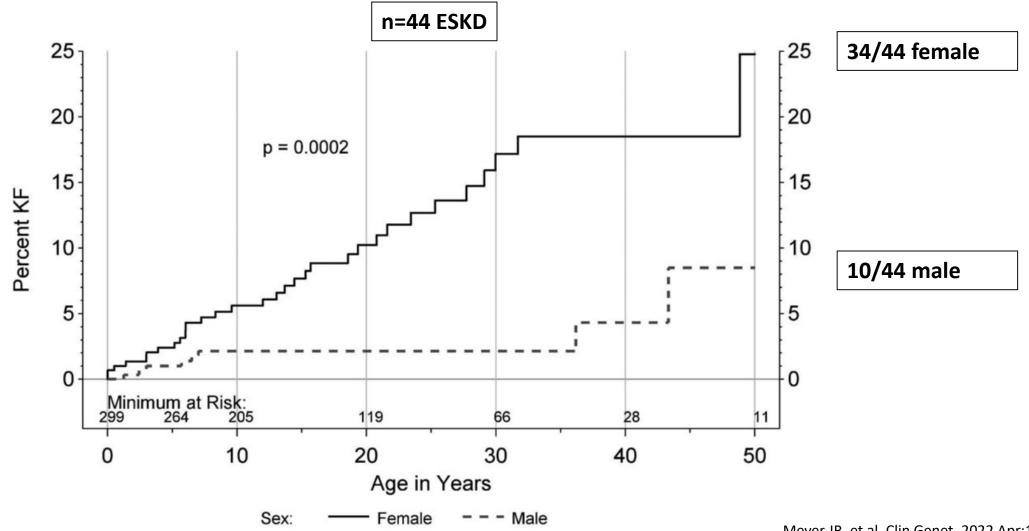
Imhoff O, et al. Clin J Am Soc Nephrol. 2011

Lessons from the CRIBBS registry

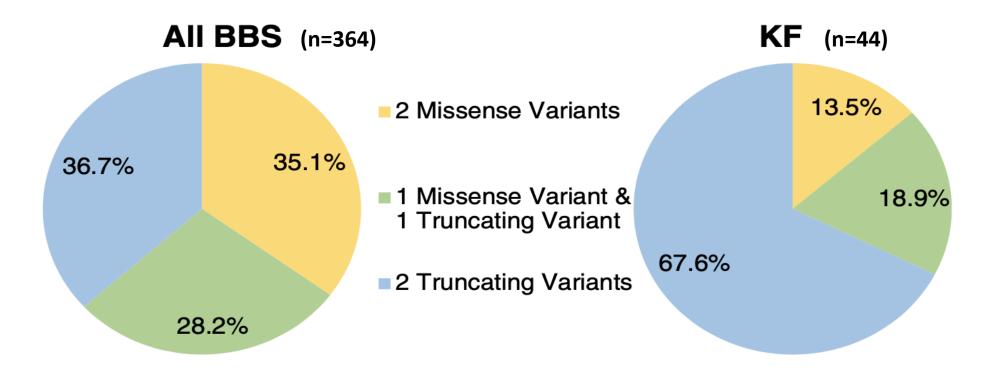
CRIBBS registry:

(Clinical Registry Investigating BBS) = global patient self-reporting registry

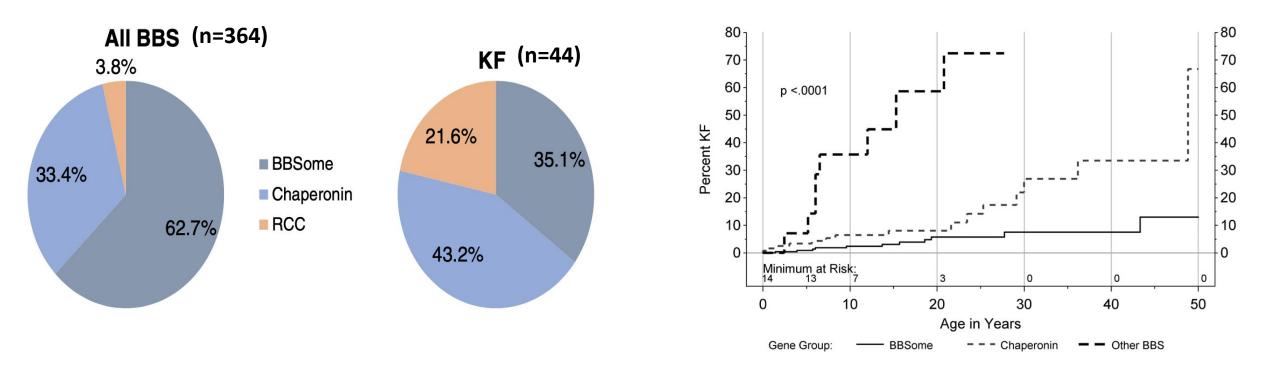
- overall 607 patients registered (12/21)
- females 300, males 307
- 364 registrants molecularly confirmed
 - BBS10 26,6%
- 44 patients with ESKD (7.2%)


Lessons from the CRIBBS registry (02/21)

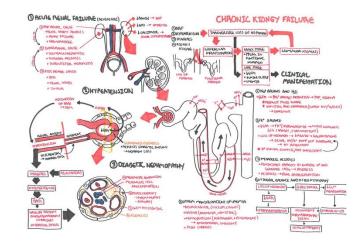
- ESKD in 37/364 genetically confirmed patients (10.1%)
- Median age of ESKD 12.5 years
- 86,7% ESKD before 30 years of age
- Females over-represented (77,3%) in ESKD group
- Presence of uropathies and presence of diabetes mellitus did not have a significant impact on the occurance of ESKD (0.67)
- <u>Risk factors:</u>
 - Female sex
 - Truncating variants
 - Genes other than BBSome/chaperon-like genes



Female sex associated with an increased risk for ESKD


Meyer JR, et al. Clin Genet. 2022 Apr;101(4):429-441.

Influence of variant severity


Onset of ESKD earlier in individuals with two truncationg variants.

Influence of gene group

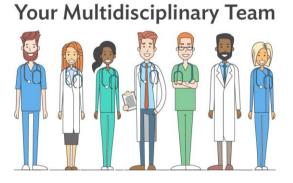
Pathogenesis of kidney disease in BBS

- pathogenesis of progressing CKD in BBS unclear
- hypertension, obesity and diabetes II are known risk factors
- renal hyposthenuria seems to be associated with faster decline of eGFR
- in vitro data suggest metabolic aberrations in the absence of BBS10
 - increased aerobic glycolysis
 - abnormal cytoplasmic lipid accumulation
 - mitochondrial dysfunction

- Marchese E. et al. Int J Mol Sci. 2022;23(16):9420.
- Zacchia M. Kidney Blood Press Res. 2017;42(5):784–793

Kidney Transplantation

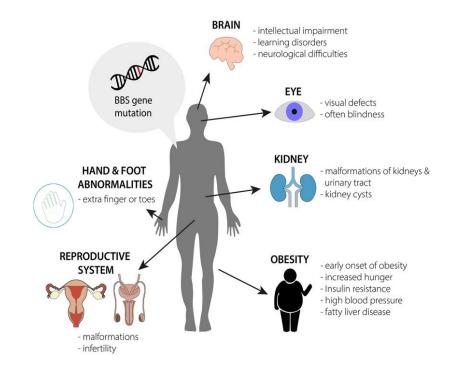
- Kidney transplantation can be considered and has been shown to result in favorable outcomes for patients with BBS.
- In fact, outcomes are comparable to those of the general population.
- However, obesity should be a limit, especially for adult subjects.
- Increase of the median BMI of the renal transplant cohort compared to the non-transplant cohort is reported....
- ...Yet, obesity was not disproportionately severe in renal transplant recipients with BBS compared to the CRIBBS cohort.


Management – many hand are required

Proposal for assessment

o Family history

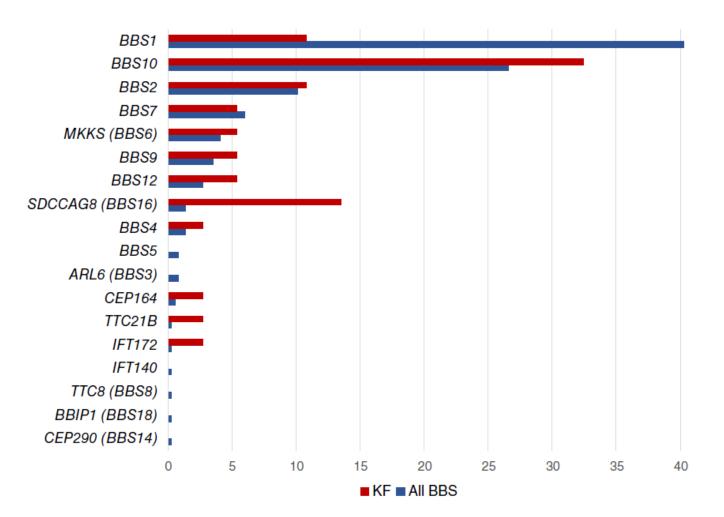
- o Anthropometric assessment, vital signs and accurate clinical examination
- Neuropsychological testing adapted to age and low vision

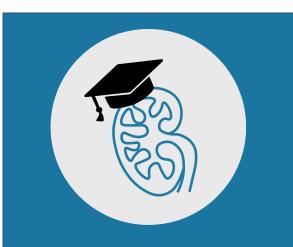

• Ophthalmological evaluation: complete eye examination, visual acuity, visual field testing, fundus examination,

ERG (generally from 4–5 years of age) and, if necessary, visually evoked responses and optical coherence tomography (OCT)

- Orodental assessment
- \circ Audiometry
- Echocardiogram, electrocardiogram (ECG)
- \circ Abdominal ultrasound
- Analysis of renal function, including estimation of GFR, albuminuria, electrolytes and acid base balance; urine osmolality
- If neurological abnormalities are present, consider brain magnetic resonance (MRI)
- Laboratory tests: liver function tests, complete blood count, electrolytes, creatine, urea, lipid panel, blood glucose (HbA1c, oral glucose tolerance test for older children/adults), gonadotropins and sex hormones (if in age of puberty), thyroid hormones
- $\circ~$ Genetic analysis and counseling.

Summary




"When children drink lots and often eat plenty, when their fingers and toes add up to higher than twenty, when speech is delayed and the penis is burried, when parents and doctors are equally worried, when night vision is blurred or even a mess, than go for genetics – it might be BBS. " J.K.

Thank you for your attendance!

Genotypes associated with ESKD

	overall CRIBBs	
BBS1	40,3%	10,8%
BBS10	26,6%	32,4%
SDCCAG8	<1,4%	13,7%

WEBINAR 16/05/23

Welcome to

ERKNet/ERN-Eye/ESPN Educational Webinars on Pediatric Nephrology & Rare Kidney Diseases

Syndromic Ciliopathies (Bardet Biedl)

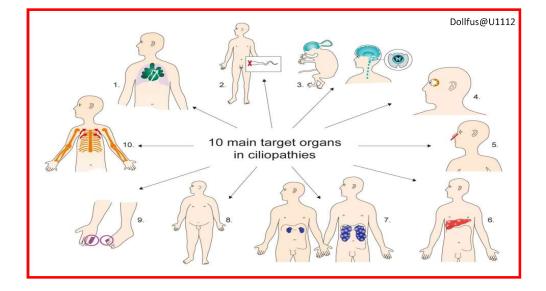
Speaker: Jens König (ERKNet) &

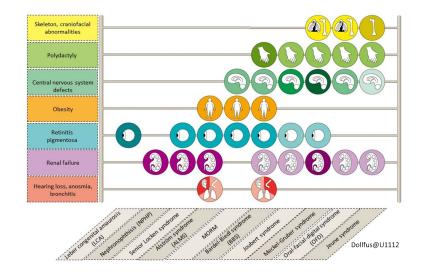
Hélène Dollfus (ERN-Eye)

Moderator: Elena Levtchenko (Amsterdam, Netherlands)

Bardet-Biedl Syndrome and the eye

Hélène Dollfus Strasbourg University Hospital ERN-EYE

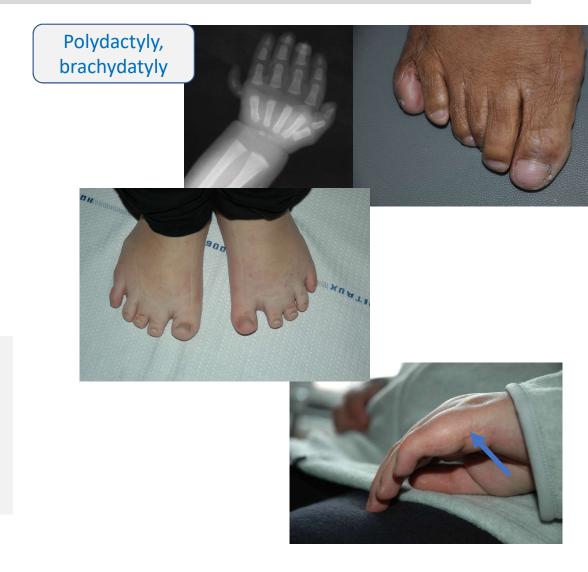




Disclosures

- Novartis
- Janssens & Janssens
- Meira-GTx
- Rhythm Pharmaceuticals
- SparingVision

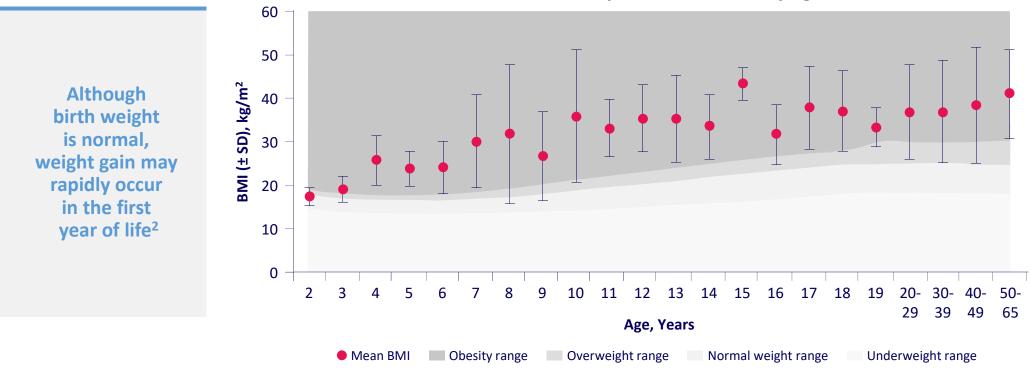
Ciliopathies = a vast group of rare diseases



Developmental anomalies

- Hands & feet +++
- Kidney development
- Genital malformations
- Heterotaxia (situs inversus)
- Hirschprung
- Congenital Heart Disease
- Oro-dental anomalies
- Cranio facial
- Scoliosis

Neurodevelopmental features :


Intellectual disability, speech delay, hyper emotivity, anxiety, autistic features ASD , dvp psychiatric traits , ... Anosmia !

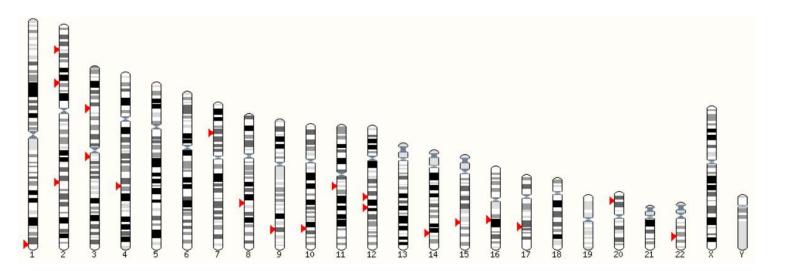
Main manifestations

- Kidney Disease: <u>not obligatory !</u> reduced urinary concentration, endstage kidney remains quite rare structural anomalies + (incl. urinary tract), HBP, voiding dysfunction
- Hypogonadism (central & peripheral) : delayed puberty, genital anomalies and abnormal testing of sexual hormones - No defect in spermatogenesis
- Endocrine : OBESITY (« truncal »)[20-86%] rapidly occuring, eating disorder reported by parents/family (hyperphagia), hypothyroidism (20%), insulin resistance & Diabetes type 2, metabolic disorders >standard obese population, HBP
- Sleeping disorder non specific but has to to be explored

Obesity in BBS can begin in childhood and increase in severity with age ¹

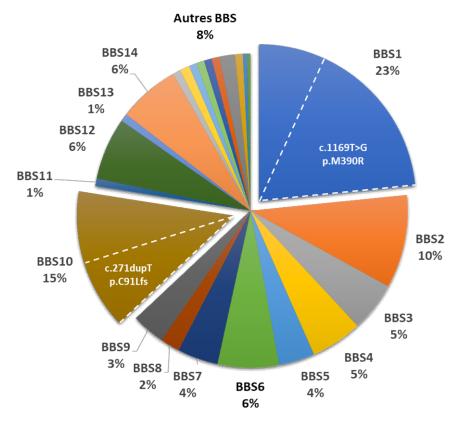
Mean BMI of patients with BBS by age³

Figure adapted with permission from Marshfield Clinic Research Institute, the research division of Marshfield Clinic Health System.


BBS, Bardet-Biedl syndrome; BMI, body mass index.

1. Katsanis N, et al. *Hum Mol Genet*. 2001;10(20):2293-2299. 2. Forsythe E, Beales PL. *Eur J Hum Genet*. 2013;21(1):8-13. 3. Marshfield Clinic Research Foundation. Accessed April 24, 2020. https://www.bbs-registry.org/bbs-news/body-mass-index-patterns-in-bbs.

Bardet-Biedl Syndrome genetics


- o Rare ~1/100000 ~1/150000
- Autosomal recessive (digenic , oligogenic , triallelic)
- High level genetic heterogenity
- o > 24 genes BBS (> 417 exons, ~53kb CDS, > 16879 aa)
- Clinical heterogeneity

o SANGER => PANELS => WES =WGS

Genetic diagnosis

- > 25 genes
- 2 most frequent : BBS1 & BBS10

(adapted j	from GeneReviews)
------------	-------------------

HGNC Gene Symbol	BBS	Synonyms				
BBS1	BBS1					
BBS2	BBS2	BBS2L1				
ARL6	BBS3	RP55				
BBS4	BBS4					
BBS5	BBS5					
MKKS	BBS6					
BBS7	BBS7					
TTC8	BBS8	RP51				
BBS9	BBS9	PTHB1				
BBS10	BBS10					
TRIM32	BBS11	HT2A, TATIP				
BBS12	BBS12					
MKS1	BBS13					
CEP290	BBS14	NPHP6, CEP290, MKS4, JBTS5, SLSN6				
WDPCP	BBS15	fritz, hFrtz				
SDCCAG8	BBS16	CCCAP, NPHP10, NY-CO-8, SLSN7				
LZTFL1	BBS17					
BBIP1	BBS18	BBIP10				
IFT27	BBS19	RAYL				
IFT172	BBS20	NPHP17				
CFAP48	BBS21	FLJ30600, CORD16, RP64, FAP418, MOT25, C8orf37				
IFT74	BBS22	CCDC2				
CEP19	BBS23	C3orf34				
SCAPER	BBS24	ZNF291				
SCLT1	BBS25?	Candidate				
CEP164	BBS26?	Candidate				
NPHP1	?					
55113						

FBN3, ...

BBS Genetic diagnosis

• BBS is autosomal recessive

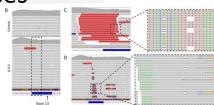
• Genetic tests:

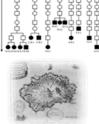
Sanger (recurrent mutations BBS1 &10)
 PANELS (variable , Kidney, RP, cilio, ect)
 WES

➤ WGS (in first intention in France – PFMG)

Biallelic pathogenic variants (class 4 or 5) for positive molecular diagnosis...

Resolving class III Unsolved heterozygotes Unsolved < 10% Prenatal or preimplantory diagnosis


- NGS has helped to solve cases Example: SVAF BBS1
 Retrotransposon insertion (Tavares 2019, Delvallée 2021)
- Founder variants such as La Réunion Island for BBS3 (Gouronc et al, 2021)



20

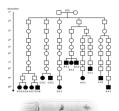
10

(n=77)

e de la Réunion

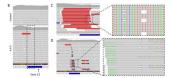
41%

(n=54)


78%

CHARACTERIZED CASES DIGENIC TRIALLELIC MONOGENIC BIALLELIC

(n=23)


■ Classical molecular approaches □ NGS

Funder effect La réunion Island *BBS3*

New mutationnal mechanism

SHORT REPORT

WILEY

High prevalence of Bardet-Biedl syndrome in *La Réunion* Island is due to a founder variant in *ARL6/BBS3*

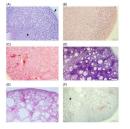
Aurélie Gouronc ¹ Vincent Zilliox ² Ma	arie-Line Jacquemont ³
Françoise Darcel ⁴ Anne-Sophie Leuvrey ¹	Elsa Nourisson ¹ Manuela Antin ¹
Jean-Luc Alessandri ⁵ Bérénice Doray ⁶	Paul Gueguen ⁶ Frédérique Payet ⁶
Hanitra Randrianaivo ³ Corinne Stoetzel ⁷	Sophie Scheidecker ^{1,7}
Hugues Flodrops ⁸ Hélène Dollfus ^{7,9,10}	Jean Muller ^{1,2,7} ()

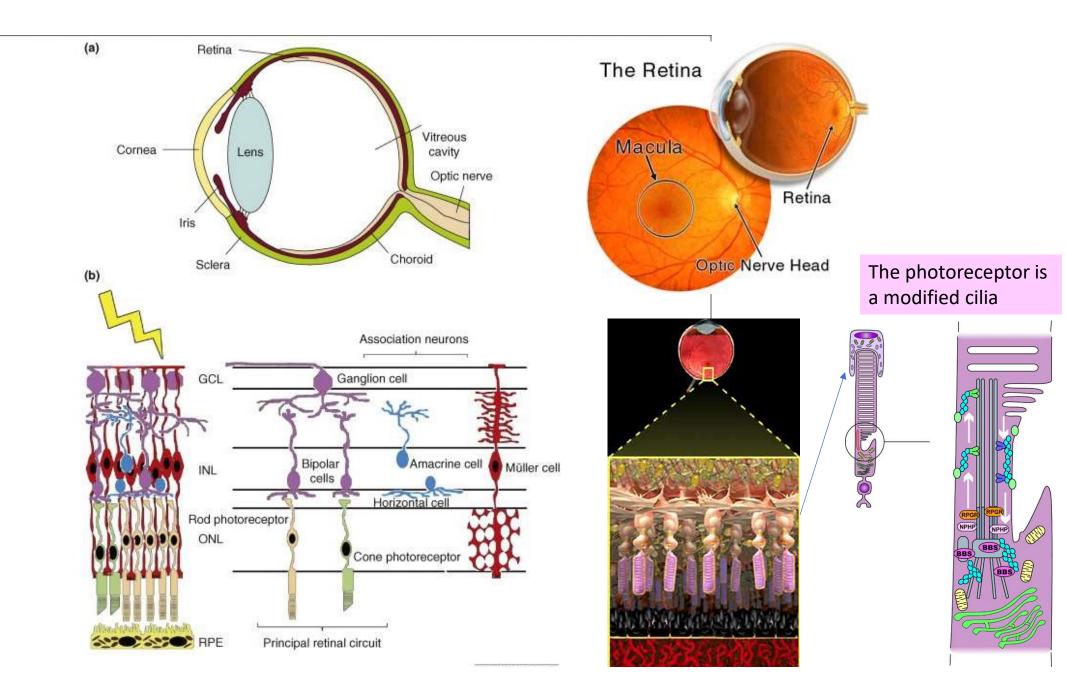
HHS Public Access

Author manuscript Clin Genet. Author manuscript; available in PMC 2021 July 02.

Published in final edited form as: Clin Genet. 2021 February ; 99(2): 318–324. doi:10.1111/cge.13878.

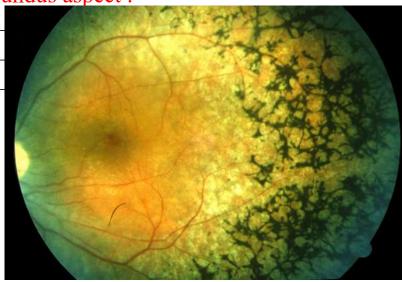
A *BBS1* SVA F retrotransposon insertion is a frequent cause of Bardet-Biedl syndrome

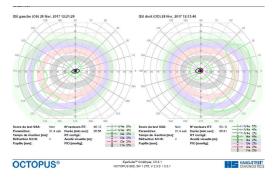

Clarisse Delvallée¹, Samuel Nicaise¹, Manuela Antin², Anne-Sophie Leuvrey², Elsa Nourisson², Carmen C. Leitch³, Georgios Kellaris³, Corinne Stoetzel¹, Véronique Geoffroy¹, Sophie Scheidecker^{1,2}, Boris Keren^{4,5}, Christel Depienne^{4,6}, Joakim Klar⁷, Niklas Dahl⁷, Jean-François Deleuze⁸, Emmanuelle Génin⁹, Richard Redon¹⁰, Florence Demurger¹¹, Koenraad Devriendt¹², Michèle Mathieu-Dramard¹³, Christine Poitou-Bernert¹⁴, Sylvie Odent^{15,16}, Nicholas Katsanis^{3,17}, Jean-Louis Mandel^{2,18}, Erica E. Davis^{3,17}, Hélène Dolfus^{1,19,20}, Jean Muller^{1,2}


ORIGINAL ARTICLE

Bardet-Biedl syndrome: Antenatal presentation of forty-five fetuses with biallelic pathogenic variants in known Bardet-Biedl syndrome genes

Laura Mary^{1,2} | Kirsley Chennen^{2,3} | Corinne Stoetzel² | Manuela Antin¹ | Anne Leuvrey¹ | Elsa Nourisson¹ | Elisabeth Alanio-Detton⁴ | Maria C. Antal^{5,6} | Tania Attié-Bitach^{7,8} | Patrice Bouvagnet⁹ | Raymonde Bouvier¹⁰ | Annie Buenerd¹⁰ | Alix Clémenson¹¹ | Louise Devisme¹² | Bernard Gasser¹³ | Brigitte Gilbert-Dussardier^{14,15} | Fabien Guimiot¹⁶ | Philippe Khau Van Kien¹⁷ | Brigitte Leroy¹⁸ | Philippe Loget¹⁹ | Jelena Martinovic²⁰ | Fanny Pelluard^{21,22} | Marie-Josée Perez²³ | Florence Petit²⁴ © | Lucile Pinson²⁵ | Caroline Rooryck-Thambo²⁶ | Olivier Poch³ | Hélène Dollfus^{2,27,28} | Elise Schaefer^{2,27} | Jean Muller^{1,2} ©


Large series of Fœtus BBS



Typical Retinitis Pigmentosa

- Nyctaploia
- Visual field progressive constriction
- Loss of central vision
- Imaging & Functional evaluation :
- BCVA, AERG, OCT, Autofluorescence, ect ...
- Fundus aspect :

Visual handicap & BBS

- Visual impairement: the best eye is not more then 3/10 and/or the Visual Field not more then 20°
- Legal Blindness: better eye is not more then 1/20 and/or the visual field is not more then 10°
- WHO 3 categories
- Category I : Severe visual impairement « counting fingers at 1m »
- Category II : almsot blind : « see hand move at 1m » En pratique, le sujet voit bouger la main à 1 mètre.
- Catégory III : Total blindness no percpetion of ligth

ICD-9-CM RANGES		EQUIVALENT NOTATIONS		TRUE SNELLEN FRACTIONS (numerator = test distance)					Visual Angle Notations		VISUAL
		Deci- mal	US	6.3 m	6 m	5 m	4 m	1 m	MAR (1/V)	Log MAR	SCORE
(Near-) Normal	Range of Normal Vision	1.6 1.25 1.0 0.8	20/12.5 20/16 20/20 20/25	6.3/4 6.3/5 6.3/6.3 6.3/8	6/3.8 6/4.8 6/6 6/7.5	5/3.2 5/4 5/5 5/6.3	4/2.5 4/3 4/4 4/5	1/0.63 1/0.8 1/1 1/1.25	0.63 0.8 1.0 1.25	-0.2 -0.1 0 +0.1	110 105 100 95
Vision	Near- Normal Vision	0.63 0.5 0.4 0.32	20/32 20/40 20/50 20/63	6.3/10 6.3/12.5 6.3/16 6.3/20	6/9.5 6/12 6/15 6/19	5/8 5/10 5/12.5 5/16	4/6.3 4/8 4/10 4/12.5	1/1.6 1/2 1/2.5 1/3.2	1.6 2.0 2.5 3.2	0.2 0.3 0.4 0.5	90 85 80 75
	Moderate Low Vision	0.25 0.20 0.16 0.125	20/80 20/100 20/125 20/160	6.3/25 6.3/32 6.3/40 6.3/50	6/24 6/30 6/38 6/48	5/20 5/25 5/32 5/40	4/16 4/20 4/25 4/32	1/4 1/5 1/6.3 1/8	4 5 6.3 8	0.6 0.7 0.8 0.9	70 65 60 55
Low Vision	Severe Low Vision	0.10 0.08 0.063 0.05	20/200 20/250 20/320 20/400	6.3/63 6.3/80 6.3/100 6.3/125	6/60 6/75 6/95 6/120	5/50 5/63 5/80 5/100	4/40 4/50 4/63 4/80	1/10 1/12.5 1/16 1/20	10 12.5 16 20	+1.0 1.1 1.2 1.3	50 45 40 35
	Profound Low Vision	0.04 0.03 0.025 0.02	20/500 20/630 20/800 20/1000	6.3/160 6.3/200 6.3/250 6.3/320	6/150 6/190 6/240 6/300	5/125 5/160 5/200 5/250	4/100 4/125 4/160 4/200	1/25 1/32 1/40 1/50	25 32 40 50	1.4 1.5 1.6 1.7	30 25 20 15
(Near-) Blind-	Near- Blindness	0.016 0.0125 0.01	20/1250 20/1600 20/2000	6.3/400 6.3/500 6.3/630	6/380 6/480 6/600	5/320 5/400 5/500	4/250 4/320 4/400	1/63 1/80 1/100	63 80 100	1.8 1.9 +2.0	10 5 0
ness	Blindness	No Light Perception (NLP)									

Ciliopathies can lead to retinal degeneration

- Bardet-Bield : 100% penetrance for retinal dystrophy
- Usually occurs in childhood with early onset retinal degeneration
- Most common syndromic RP (with Usher syndrome)
- Early onset retinal dystrophy : Diagnosis around 5-10 years old , starts around 4-5 years old
- Nyctalopia, photophobia, visual field defects, nystagmus, low vision
- Legal blindness around age 15
- Diagnosis relies on : retinal **imaging** and Electroretinogramm (ERG)

Manifestations

- (early onset photophobia and nystagmus => Alström syndrome)
- Difficult night /dim light vision (nyctalopia)
- Visual field progressive restriction => clumsiness – bumping , ...
- Central vision can be affected early => playing – reading –color impairement , ...
- Secondary : nystagmus, strasbismus,

Normal vision

As seen by a person with retinitis piamentosa

Electroretinogramme ERG

- Test retinal cells with ligth stimulus
- Alteration detectable even if fundus seems normal

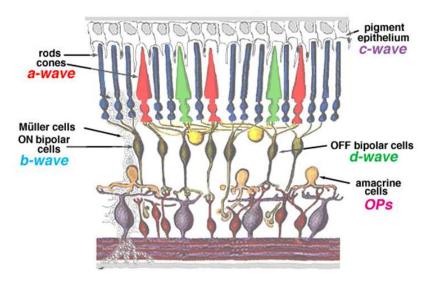
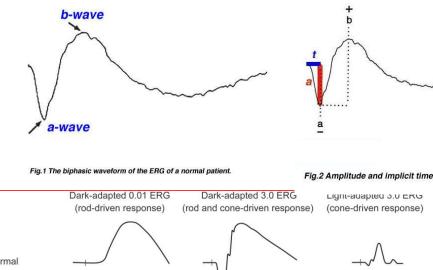
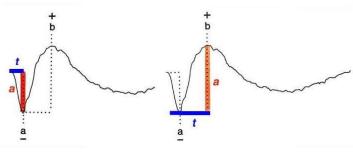
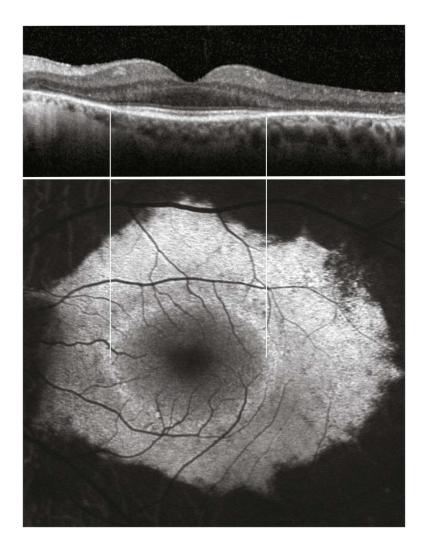
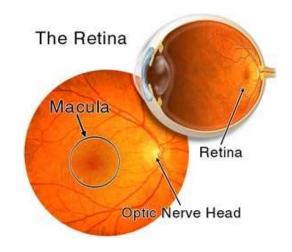
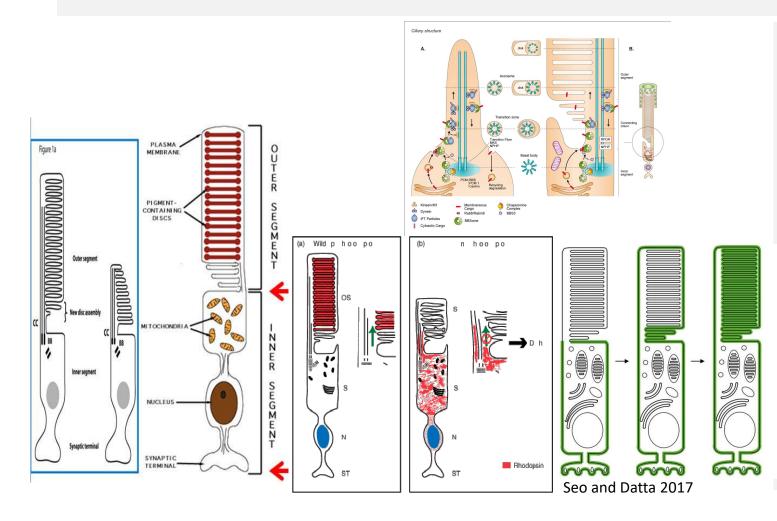



Fig.3 Cartoon of the retina to show where the major components of the ERG originate.


Fig.2 Amplitude and implicit time measurements of the ERG waveform.

OCT et autofluorescence d'un patient avec une rétinopathie pigmentaire:

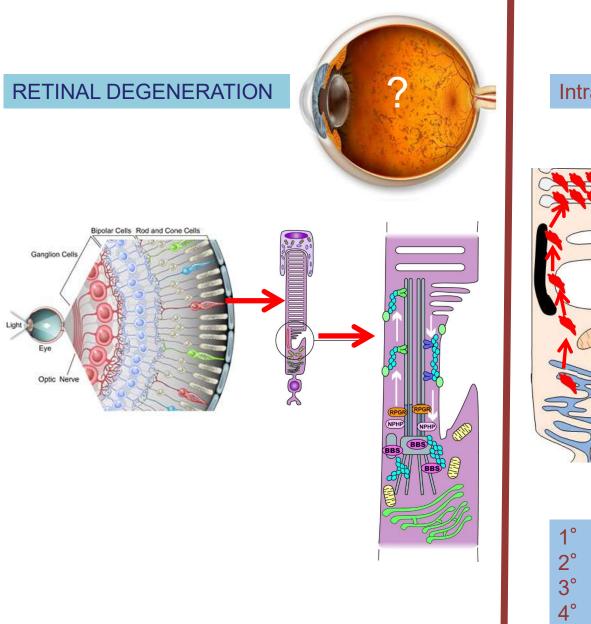

-Perte des couches externe de la rétine périmaculaire

-Zone ellipsoïde

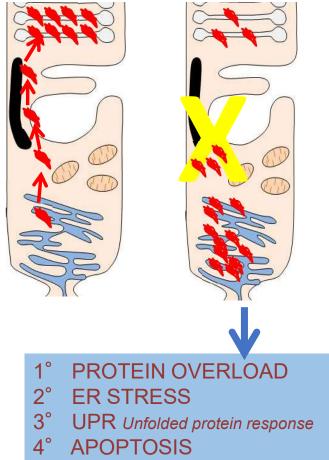
-=> correspondance avec anneau hyperfluorescent

Verbakel SK, et al, Prog Retin Eye Res. 2018

Retinal degeneration in ciliopathies

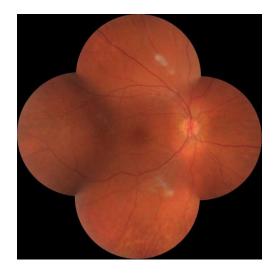


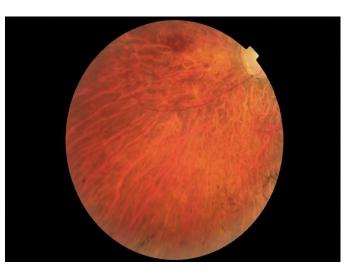
Photoreceptors have a ciliary structure


Many animal models for BBS : Paramecium, Chlamydomonas Reinardtii, Trypanosoma brucei, Caenorhabditis elegans, Dario, mouse, Rhesus macaque

Mecanism 2 X : accumulation of proteins in the Inner Segment and/or accumulation of unwanted proteins in the Outer Segment that cannot return in the Inner Segment machinery

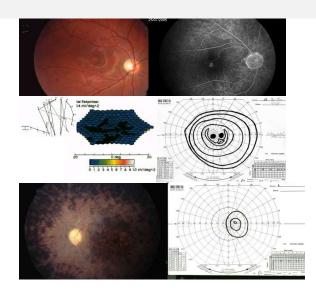
(Review Delvallee & Dollfus, in press)

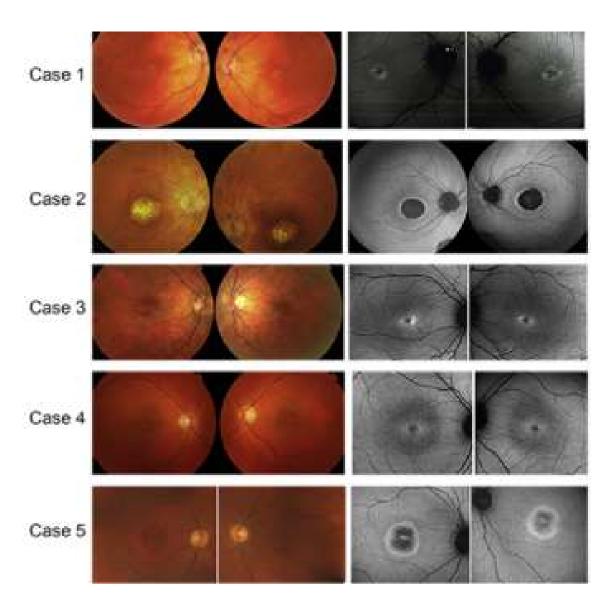

Intra Flagellar Traffic (IFT)



Clinical variability i.e the Retina

- Early onset RP
- Visual symptoms before the age of 5
- ERG early defects => flat
- Poorly sighted education
- Legal blindness around 15
- Adults are usually highly handicaped



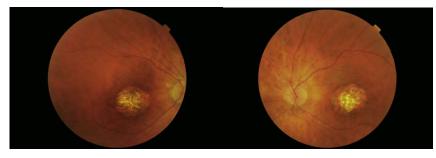


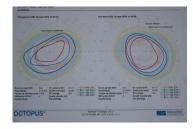
Retinal dystrophy

- Rod-Cone & Cone–Rod most often
 « global »
- Late onset possible
- Major central forms exists

Predominantly Cone-System Dysfunction as Rare Form of Retinal Degener Molecularly Confirmed Bardet-Biedl Syndrome. Scheidecker S et al Am J Ophtalmol 2015

Extreme phenotype: Maculopathy (Scheidecker et al, 2015)

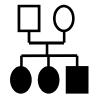

Polydactyly


•Mild learning difficulties

•Retinal degeneration since the age of 8

•Notion of nivaquine intake for a few months

•BBS12 p.[P159L];[I346T]


Extreme phenotype: late onset....

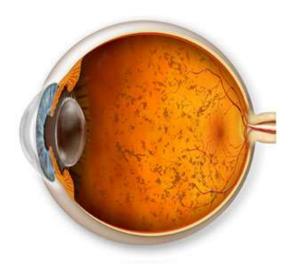
(Scheidecker et al, 2015)

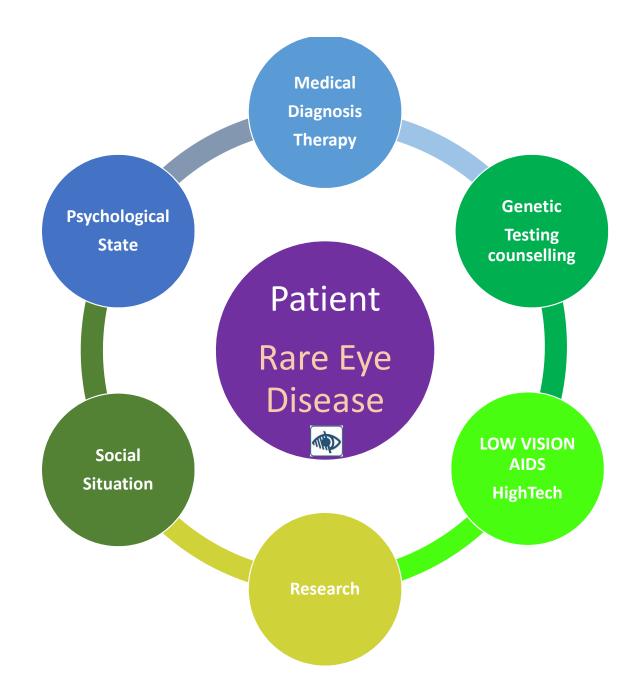
HOMOZYGOTE for Mutation p.[M390R];[M390R] BBS1 gene Polydactyly Obesity Slowness of mind **Psychiatric problems**

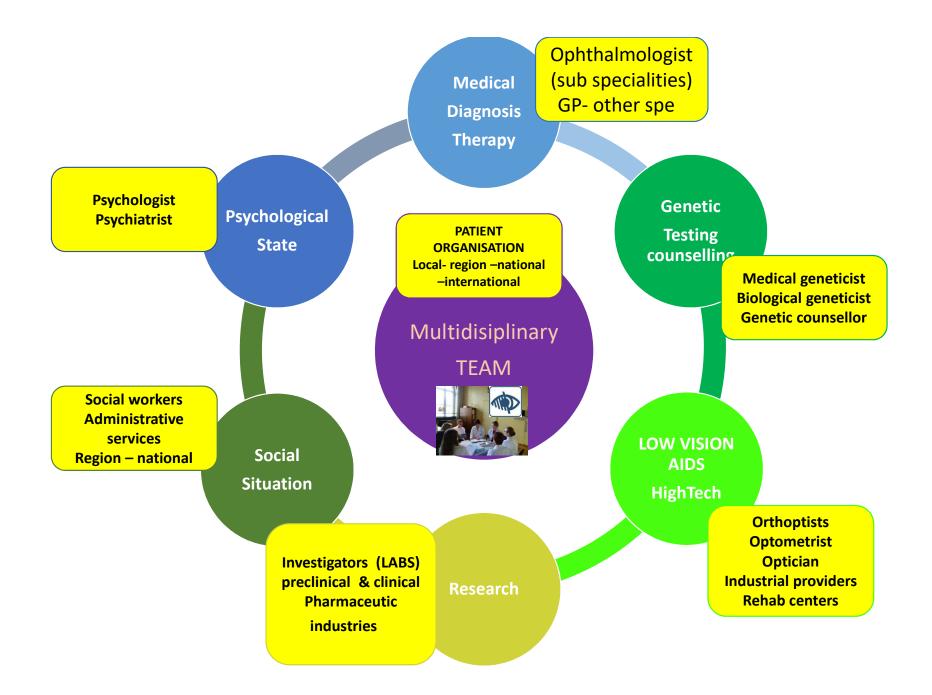
RETINA:

VA diminishes at 9 years old Normal fundus at 10 ERG normal at 14 At 31 yo: AV OD 1/13^{ème}

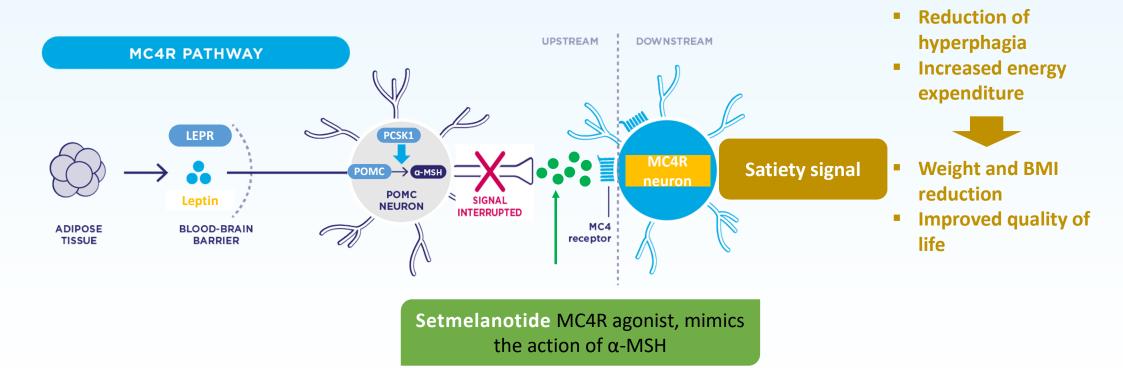
P4 et OG 2,4/10^{ème} P4

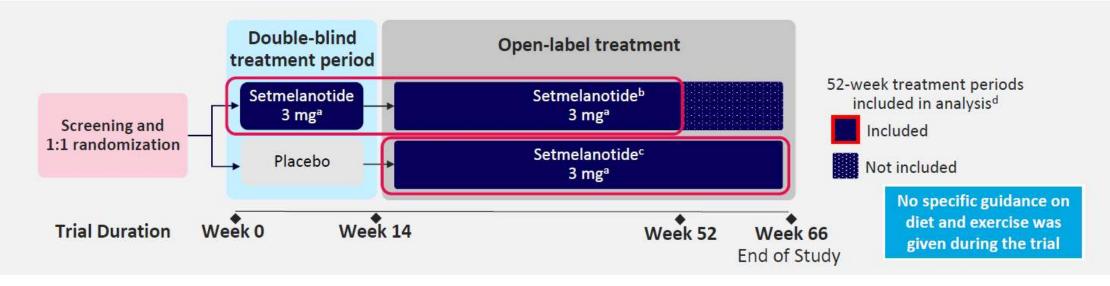

ISOLATED and SYDNROMIC IRD's: identical genes ?


USHER SYNDROME


• USH2A: Isolated RP or Usher syndrome (Seydahami et al, 2004)

CILIOPATHIES


- CEP290/NPHP6 (Den Hollander et al, 2006)
- BBS3 (Aldahmesh, 2009)
- BBS8 (Riazzudin et al, 2010)
- BBS1 (Estrada- Cuzanao et al, 2012)
- BBS10 (Grudzinka Pechhacker, 2021)
- BBS21 (Kahn et al, 2016)
- IFT 172 (Bujakowska et al, 2015)
- IFT140 (Hull S, 2016)
- AHI1 (N'Guyen et al, 2017)



Setmelanotide: MC4R agonist that restores the signal at the hypothalamic level

Phase 3 SETMELANOTIDE

In patients with BBS and obesity, after 1 year of treatment with setmelanotide:

- A clinically and statistically significant weight loss in adults
- an improvement in BMI z-score in children and adolescents
- a clinically significant reduction in hunger scores
- an increase in QoL scores

Setmelanotide was well tolerated in accordance with the profile established in previous trials

IMCIVREE[®] (setmelanotide)

Treatment of obesity and hunger control associated with genetically confirmed **biallelic pro-opiomelanocortin (POMC) loss of function,** including PCSK1 deficiency or biallelic leptin receptor (LEPR) deficiency in adults and children aged 6 years and older

November 2020 FDA approval

January 2022 Early access approval in France

BBS indication extension - FDA and EMA Treatment of obesity and hunger control associated with Bardet-Biedl Syndrome (BBS) in adults and children aged 6 years and older **BBS indication - Early Access France** Treatment of obesity and hunger control associated with genetically confirmed **Bardet-Biedl syndrome (BBS)** in adults and children aged 6 years and older

June 2022 FDA approval September 2022 EMA approval

July 2022 Early access approval in France

Setmelanotide clinical development

	Diseases	PRECLINICAL	PHASE 1	PHASE 2	PHASE 3	Registration	Market authorization
	POMC / PCSK1 deficiencies					US EU	US EU
	LEPR deficiency					US EU	US EU
	Bardet-Biedl Syndrome					US EU	US EU
	Alström						
SETMELANOTIDE	EMANATE trial: - Heterozygous POMC/PCSK1 & LEPR deficiencies - - Heterozygous or homozygous NCOA1 / SH2B1 deficiencies						
	Pediatrics trial (2 – 5 years)						
	Hypothalamic obesity						
	Weekly trial						
	DAYBREAK trial: Genes involved in MC4R pathway						

European Market Access: IMCIVREE[®] available in 8 european countries

Germany Monogenic obesity + BBS	 IMCIVREE[®] commercial availability since June 2022 for monogenic obesity and April 2023 for BBS
France Monogenic obesity + BBS	 Early access since January 2022 for monogenic obesity and since July 2022 for BBS
Italy, NL,UK, Austria, TK, Spain Monogenic obesity	since Q3-Q4 2022 • IMCIVREE® commercial availability since Q1 2023

BBS Early Access Program IMCIVREE® in France: 7th July 2022

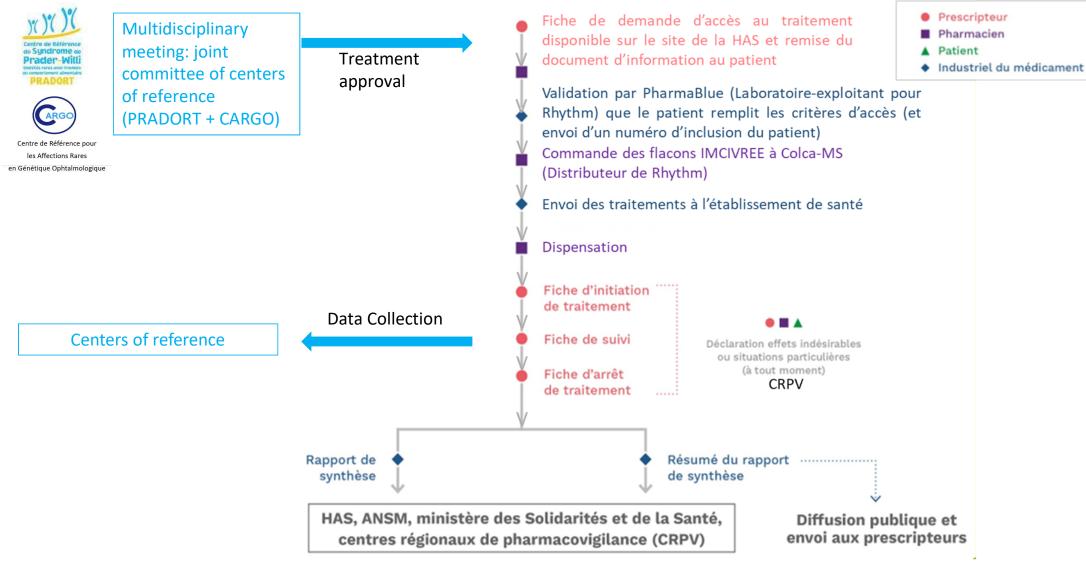
Indication:

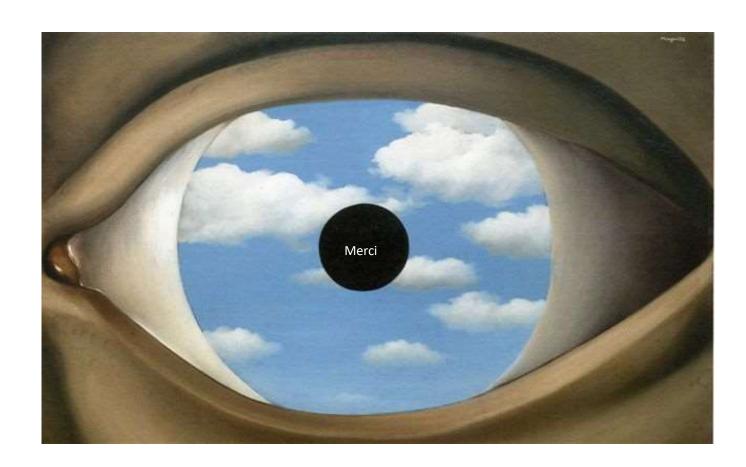
IMCIVREE[®] (setmelanotide) is indicated for the treatment of obesity and hunger control associated with Bardet-Biedl Syndrome (BBS), in adults and children aged 6 years and older

Conditions for prescription and supply:

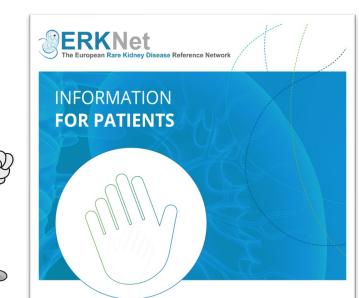
- Hospital prescription.
- Initial prescription and renewal reserved for specialists in endocrinology-diabetology-nutrition, pediatrics and medical genetics.
- IMCIVREE should be prescribed and monitored by a doctor specializing in obesity with underlying genetic etiology.
- Contact with the expert centers is recommended.

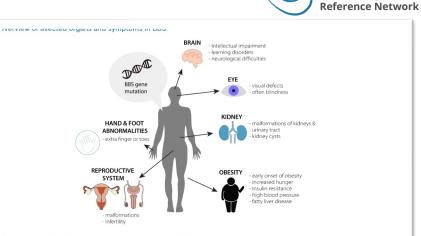
Eligibility criteria:


- Adult: BMI \geq 30 kg / m² and/or hyperphagia
- Child ≥ 6 years old / Adolescent: obesity with weight ≥ 97e percentile (BMI-Z score ≥ + 2DS) and/or hyperphagia


Non-eligibility criteria:

- Hepatic impairment
- End-stage renal disease
- Significant hypersensitivity to study drug
- Suicidal ideation


Practical modalities of treatment and follow-up of patients in France



www.ern-eye.eu

ERKNet Disease Information Brochures

BARDET-BIEDL SYNDROME

ERKNet

The European Rare Kidney Disease

What do you need to know about Bardet Biedl Syndrome?

The aim of this booklet is to explain which organs can be affected by Bardet-Biedl syndrome, and how the prognosis and quality of fe of BBS patients can be improved. Early diagnosis is important for quality of life and patients with BBS generally require multipecialised care.

idney problems can cause serious complications of the disease and later in this leaflet we will explain how medication and lifestyle hanges can delay the onset of kidney failure.

listory of the disease

he disease was first described independently in 1920 by a French doctor, Georges Bardet, and in 1922 by Hungarian-Austrian

• Have you heard of this before?

As recently shown BBS patients have also a higher prevalence of certain autoimmune diseases:

- inflammatory bowel diseases as Crohn's disease
- diabetes Typ 1
- rheumatoid arthritis
- hypothyroidism and Hashimoto's thyroiditis

Altered red blood cell and platelet compartments, as well as elevated white blood cell levels have been found in BBS patients. Some study reveals a connection between a ciliopathy and dysregulated immune and hematopoietic systems and immunity. Some of these alterations are associated with BBS-induced obesity which leads to elevated concentration of white blood cells in BBS patients. Obesity can induce the state of low-grade metabolic inflammation and one of the major players in obesityassociated inflammation is leptin, an adipocyte-derived hormone which acts as a pro-inflammatory cytokine. It has been shown that leptin signalling in the central nervous system regulates immune responses. Thus, it is possible that defective leptin signalling in the nervous system directly contributes to high prevalence of autoimmunity in BBS patients.

Bardet-Biedl syndrome (BBS) is a rare disease affecting several organs, including the kidneys. BBS is caused by an abnormally functioning cell component called a cilium (or cilia, plural) which is present on many cell types from different organs. Cilia are long, thin, hair-like projections that enable the cell to receive signals from outside and inside the cell. Bardet-Biedl syndrome is therefore categorized as a 'ciliopathy' (to find out more about cilia and their function please see pages 4 and 7).

NEXT **WEBINAR** 06/06/2 27/06/2307/23 - 08/2319/09/2023

> Subscribe our Newsletter Or follow us on Twitter @EuRefNetwork

Physiology of Podocytophathies Tobias Huber (Hamburg, Germany)

Immune glomerulopathies: a pathogenesis and treatmentoriented approach for clinical management Paola Romagnani (Florence, Italy)

SUMMERBREAK

<u>Galloway-Mowat Syndrome</u> Guillaume Dorval (Paris, France)

