Advances in molecular understanding of cystinosis: implications for therapy

Corinne Antignac
Laboratory of Hereditary Kidney Diseases
Imagine Institute – Inserm U1163
Paris Descartes University
Necker – Enfants Malades Hospital

Diagnosis and management of inherited kidney diseases: What’s new?
54th EDTA-ERA Congress, Madrid, June 3, 2017
Cystinosis

- Rare autosomal recessive lysosomal storage disorder
- Defective lysosomal efflux of cystine
- Three clinical forms:
 - infantile or nephropathic (Fanconi syndrome)
 - juvenile
 - ocular non-nephropathic
- Multisystem disease

No genetic heterogeneity: complementation studies in somatic cell hybrids between fibroblasts from patients with different forms of cystinosis (Pellet, Smith et al. 1988)
Treatment - cysteamine

Cysteamine

- **Oral administration:** improves growth & glomerular filtration rate; delays ESRD and the appearance of other clinical anomalies
- **Eye drops:** dissolve corneal cystine crystals
- **Side effects & need of regularly spaced doses:** (each 6h for oral cysteamine and each 1h for eye drops)
- **No effect on Fanconi syndrome**
- **New delayed-release form administrated twice a day** (Dohil, Gangoiti et al. 2010)
Cystinosin, the gene product of CTNS mutated in cystinosi

- Lysosomal membrane protein with two targeting motifs (Cherqui et al., JBC, 2001)
- Proton-cystine symporter active at low pH, allowing cystine export from lysosomes (Kalatzis et al., EMBO J, 2001)

- Component of the vATPase-Ragulator-Rag complex controlling the mTORC1 complex (Andrzejwska et al., JASN, 20017)

(R: Ragulator complex + Rag GTPases)
Cystinosis: Mutations in the CTNS gene encoding cystinosin

- ~120 different mutations in cystinosis patients all over the world
- 57kb “European” deletion (56 to 76% in Northern Europe)
- Several recurrent mutations in addition to the “European” deletion
- Maternal uniparental heterodisomy of chrom 17

Clear phenotype-genotype correlations:
- Two «severe» mutations in the infantile forms
- Two «mild» mutations or one «severe» and one «mild» mutation in the other forms
Functional studies of missense mutations

- Good genotype-phenotype correlation but some exceptions:
 - 2 mutants associated with infantile cystinosis are partially or fully active (additional, unidentified mutations in these patients? - less severe phenotype?)
 - 3 mutants associated with juvenile or atypical cystinosis do not transport cystine (additional role of cystinosin beyond cystine transport?)

![Diagram showing cystine transport as a percentage of cystinosin-ΔGYDQL activity for various mutations.]

- G110V
- V42I
- S298N
- D346N
- W182R
- N323K
- S139F
- K280R

Mutation

- Infantile
- Juvenile
- Atypical
- Ocular
Proposed cellular dysfunctions in cystinosis

- **Impact of cystine accumulation on glutathion synthesis and oxidative stress** (Chol et al., 2004; Laube et al., 2006; Mannuci Pastores et al., 2006; Bellomo, Corallini et al., 2010)
- **Increased apoptosis** (Thoene et al., Mol Genet Metab 2007; Sansanwal et al., Pediatric Nephrology 2010; Taub and Cutuli, BBRC 2012)
- **Increased ER stress** (Wei et al., HMG, 2007)
- **Reduced TFEB (master regulator of the autophagy–lysosomal pathway) expression and induced nuclear translocation** (Rega et al., KI, 2016)
- **Impaired lysosomal transport** (Johnson et al., MCB, 2013)
- **Involvement in the mTORC1 pathway** (Andrzejewska et al. JASN, 2015; Ivanova et al., JIMD 2016)

Direct impact of **cystine crystal** accumulation and/or the absence of **cystinosin**?
Proposed cellular dysfunctions in cystinosis

From Cherqui & Courtoy, *Nature Reviews | Nephrology* 2017
New potential therapeutic interventions

- Additional therapies to cysteamine
 - cysteine supplements
 - anti-oxydants
 - triggers of lysosome biogenesis,
 - CMA modulators
 - TFEB expression modulators (genistein)

- **Stem cell therapy**: How delivering a lysosomal transmembrane gene product to every tissue?
Hematopoietic stem cell (HSC) transplantation in Ctns−/− mice

Confocal Microscopy 4 months post-transplantation

Spleen

Kidney

Brain

Eye

Cystine content at 2 and 4 months post-transplant

GFP transgenic wild-type mouse

GFP-HSC Sca1+ cells

Ctns−/− mice

Long term significant reduction of cystine levels in all organs

Syres et al., Blood, 2009
Impact of HSC transplantation on the kidney pathology in $Ctns^{-/-}$ mice

Kidney histology in 15-17 month old mice after over 1 year post-transplantation

Wild-type

Treated $Ctns^{-/-}$

High level of donor-derived blood cell engraftment expressing $Ctns$ (>50%)

The higher the quantity of bone marrow cells expressing $Ctns$ the better the preservation of the kidney

Low level of donor-derived blood cell engraftment expressing $Ctns$ (<50%)
Impact of HSC transplant on cystine crystals in the kidney

Yeagy et al., *Kidney Int.*, 2011
Impact of HSC transplant on the eye defects in *Ctns*-/- mice

Eye study after over 1 year post-transplantation

In Vivo Confocal Microscopy (IVCM)

Histology and central cornea thickness (CCT) measurement

Rescue of corneal defects by HSC transplantation

Rocca *et al.*, *IOVS.*, 2016
Thyroid pathology in Ctns\(^{-/-}\) mice and impact of HSC transplantation

Most frequent and earliest endocrine complication of cystinosis

Cystine measurement in the thyroid

Mesure of Thyroid Stimulating Hormone (TSH) in serum

Drs X.H. Liao & S. Refetoff, UChicago

Gaide Chevrannay et al., Endocrinology, 2016
Clinical translation: autologous gene-modified HSC transplantation

- Safety
- Gene frequency
- Risk of integration mutagenesis

Adapted from Leboulch, Nature 2013
Preclinical studies for genetically-modified HSC transplantation

Ctns^{-/-} HSC

- **Ctns^{-/-} mice**
- Tail Vein Injection

Ctns^{-/-} mice

- Decrease cystine levels in all tested tissues
- Long term transgene expression

Kidney cystine content

- 8 months post-transplant

Renal function

Table 1. Serum and urine analyses for renal function

<table>
<thead>
<tr>
<th></th>
<th>Wildtype (n=6)</th>
<th>Control Ctns<sup>-/-</sup> (n=9)</th>
<th>pCCL-CTNS Treated Ctns<sup>-/-</sup> (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Creatinine (mg/dL)</td>
<td>0.27 ± 0.03</td>
<td>0.31 ± 0.08</td>
<td>0.22 ± 0.11**</td>
</tr>
<tr>
<td>Serum Creatinine clearance (ml/min/kg)</td>
<td>4.44 ± 0.39</td>
<td>3.89 ± 1.42</td>
<td>4.86 ± 5.56</td>
</tr>
<tr>
<td>Serum Urea (mg/dL)</td>
<td>14.55 ± 1.67</td>
<td>28.29 ± 16.11</td>
<td>24.10 ± 7.32</td>
</tr>
<tr>
<td>Serum Phosphate (mg/dL)</td>
<td>12.25 ± 2.38</td>
<td>13.20 ± 2.90</td>
<td>13.10 ± 2.21</td>
</tr>
<tr>
<td>Urine Phosphate (mmol/24h)</td>
<td>6.82 ± 2.90</td>
<td>8.84 ± 4.60</td>
<td>4.78 ± 3.87**</td>
</tr>
<tr>
<td>Urine Volume (ml)</td>
<td>1.05 ± 0.51</td>
<td>1.26 ± 0.54</td>
<td>0.70 ± 0.60*</td>
</tr>
</tbody>
</table>

[*]P<0.05 compared to wildtype mice

<sup>P<0.05 compared to Ctns^{-/-}**

Cystine crystals quantification

- Non-treated Ctns^{-/-} mice
- pCCL-CTNS-treated mice

Harisson et al., *Mol. Ther.*, 2013
Characterization of the transplanted HSCs within the kidney

Differentiation, fusion or transdifferentiation?

Kidney

Eye

Thyroid

Transplanted HSCs differentiate into macrophages within tissues in Ctns−/− mice

How do transplanted HSCs mediate tissue repair in cystinosis?

• Phagocytic functions
• Cross-correction i.e. transfer of cystinosin from the transplanted cells to the adjacent Ctns−/− cells
Cross-correction: *in vitro* studies

Cystinosin transfer via cell-cell contact

![Diagram showing Cystinosin transfer via cell-cell contact](image)

- **GFP**
 - macrophages
- DsRed Ctns
 - Fibroblasts

![Graph showing cystine content](image)

- Control
- Macrophages: 75%

![Image showing cystinosin-GFP fusion protein](image)

Nanotubular Highways for Intercellular Organelle Transport

Amin Rustom, Rainer Saffrich, Ivanka Markovic, Paul Walther, Hans-Hermann Gerdes

Science, 2004

![Image showing nanotubular highways](image)

Cystinosin-GFP fusion protein

- Ctns
 - Macrophages
- DsRed Ctns
 - Fibroblasts

Naphade et al., *Stem Cells, 2015*
Kidney

Cross-correction: *in vivo* studies

- Vesicular cross-correction in kidney
- Also demonstrated in cornea and thyroid

Naphade et al., *Stem Cells*, 2015
Rocca et al., *IOVS*, 2015
Gaide Chevironnay et al., *Endocrinology*, 2017
Conclusions

- Several key cellular dysfunctions are observed in cystinosis linked to the lysosomal cystine accumulation and/or additional roles of cystinosin beyond cystine transport.

- Several new lines of treatment are being developed:
 - In addition to cysteamine therapy, drugs targeting the various pathways altered in cystinosis.
 - **Stem cell therapy**
 - Long term significant reduction of cystine levels in all organs by hematopoietic stem cells in a *Ctns-/-* mouse model.
 - Differentiation of HSC in macrophages
 - Phagocytic function
 - Cross-correction through nanotubes
 - Clinical trials being set up in the US (autologous stem cell transplantation).
 - Novel additional eye treatments (corneal nanowafers).
ACKNOWLEDGEMENTS

Department of Pediatrics
Division of Genetics
Celine Rocca, PhD
Tatiana Lobry
Spencer Goodman
Peter Hevezi, Ph.D
Laura Hernandez
Maulik Panchal
Joseph Haquang
Carlos Castellanos
Emily Chua
Roy Miller

Former members
Jay Sharma
Swati Naphade, PhD
Betty Cabrera
Frank Harrison
Sarah Ur
Athena Lau
A. Yeagy, PhD

Department of Ophthalmology
Jeffrey L. Goldberg, MD, PhD
Alexander Kreymerman

Department of Pathology
Nigel A. Calcutt, MD, PhD
Katie E. Frizzi

Department of Pediatrics
Bruce Barshop, MD, PhD
Ilya Gertsman
Jerry Schneider, MD
Jon Gangoiti
Ilya Gertsman

Department of Neurosciences
Jennifer Dulin, PhD
Mark Tuszynski, MD, PhD
Charles Heyser, PhD

Department of Immunology & Molecular Biology and Pediatrics
Donald B. Kohn, MD

FUNDING

Department of Pediatrics
Bruce Barshop, MD, PhD
Ilya Gertsman
Jerry Schneider, MD
Jon Gangoiti
Ilya Gertsman

Department of Neurosciences
Jennifer Dulin, PhD
Mark Tuszynski, MD, PhD
Charles Heyser, PhD

ImmunoLogy & Molecular Biology and Pediatrics
Donald B. Kohn, MD

The Cystinosis Stem Cell and Gene Therapy Consortium members

UC San Diego Health
CIRM Alpha Stem Cell Clinic

Fellowship to Tatiana Lobry

U.S. Department of Health and Human Services
NIH
National Institute of Diabetes and Digestive and Kidney Diseases
National Institute of Neurological Disorders and Stroke
Sanford Stem Cell Clinical Center

CIRM
California's Stem Cell Agency

University of California, San Diego
School of Medicine

Department of Cell Biology
Heloise Gaide Chevrannon, Ph.D
Pierre Courtoy, MD

U983: Department of Genetics
Corinne Antignac, MD, PhD
Marie-Claire Gubler, MD, PhD

Department of Molecular and Experimental Medicine
Daniel R. Salomon, MD
Acknowledgements

Laboratory of Hereditary Kidney Diseases

Nathalie Nevo
Lucie Thomas
Zuzanna Andrzejewska
Véronique Chauvet
Anne Bailleux
Daniel Pouly

A. Benmerah (team S. Saunier)

Proteomic platform Necker
Ida Chiara Guerrera
Cerina Chhuon

Cell imaging platform Necker
Meriem Garfa-Traoré
Nicolas Goudin
Raphaëlle Desvaux

Collaborations

Bruno Gasnier (IBPC, Paris)
Olivier Devuyst (Zürich)
Pierre Courtoy (UCL, Brussels)
Stéphanie Cherqui (Scripps, La Jolla)
Cystinosin interacting partners
Proteins interacting with cystinosin (by mass spectrometry)

<table>
<thead>
<tr>
<th>Protein Description</th>
<th>CD63-GFP</th>
<th>Fibroblast cystinosin-GFP</th>
<th>MDCK cystinosin-GFP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=2</td>
<td>n=4</td>
<td>n=4</td>
</tr>
<tr>
<td>Human Cystinosin-GFP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFP</td>
<td>40</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>V-type proton ATPase catalytic subunit A</td>
<td>19</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>V-type proton ATPase subunit B, brain isomorf</td>
<td>21</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>V-type proton ATPase subunit C 1</td>
<td>6</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>V-type proton ATPase subunit D</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>V-type proton ATPase subunit E 1</td>
<td>5</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>V-type proton ATPase subunit F</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>V-type proton ATPase subunit G 1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>V-type proton ATPase subunit H</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>V-type proton ATPase subunit S1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>V-type proton ATPase subunit d 1</td>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>V-type proton ATPase 15 kDa proteolipid subunit</td>
<td>5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>V-type proton ATPase 116 kDa subunit a isomorf 1</td>
<td>17</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>V-type proton ATPase 116 kDa subunit a isomorf 2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ragulator complex protein LAMTOR1</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Ragulator complex protein LAMTOR2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ragulator complex protein LAMTOR3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ragulator complex protein LAMTOR5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ras-related GTP-binding protein C</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ras-related GTP-binding protein A</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- **Additional control:** Lamp1-GFP
- **Ers1** (homolog of \textit{CTNS}) in yeast also involved in the TOR pathway

(Andrzejewska \textit{et al.}, JASN, 2015)
Cystinosin binding partners

v-ATPase

Rag GTPases
- RagA/B
- RagC/D

Ragulator
- p14
- MP1
- HBXIP
- C7orf59

IP GFP
- V0a1
- GFP
- RagC
- RagA
- p18

Lysates
- V0a1
- GFP
- RagC
- RagA
- p18

IP RagC
- V0a1
- GFP
- RagC
- RagA
- p18

Lysates
- V0a1
- GFP
- RagC
- RagA
- p18
Interaction networks for mutants of cystinosin

Mutation observed in infantile cystinosis
Mutations observed in juvenile, ocular or atypical cystinosis

Role of the 5th inter-TM loop +++

- N288K
- K280R
- N323K

Mutation observed in infantile cystinosis
Mutations observed in juvenile, ocular or atypical cystinosis
mTORC1 signaling complex

growth factors
- glucose
- oxygen levels
- energy levels
- amino acids

Growth promoting programs:
- eIF4E
- 4E-BP1
- S6K1
- mTOR
- DEPTOR
- RAPTOR
- RAPTOR
- PRAS40
- TTI1
- TEL2
- SREBP1/2
- ULK1
- ATG13
- FIP200
- TFEB
- eIF4E

Energy metabolism:
- ATP
- eIF4E

Lysosomal biogenesis:
- TFEB

Autophagy:
- ULK1
- ATG13
- FIP200

mTORC1 signaling complex is inhibited by Rapamycin.

Upstream signals:
- TSC1
- TSC2

Rheb
- GTP
- TSC1
- TSC2
Amino acid-dependent activation of mTORC1 pathway

Zoncu et al. 2011
Bar-Peled et al. 2012
Characterization of mouse proximal tubular cell lines

Activity of brush border enzymes

γ-glutamyl transferase

33°C

39°C

alkaline phosphatase

Expression of markers of polarized epithelia

Ctns \(^{+/+}\)

Ctns \(^{-/-}\)

ZO-1

β-catenin
Cellular repartition of mTOR and Lamp-1 in response to nutrients

Defective mTOR relocalization in Ctns−/− cells correlates with impaired downstream signaling.

Lack of cystinosin alters mTOR localization.

Cystinosin essential for mTOR regulation by nutrients in MPT cells.

Defective mTOR relocalization in Ctns−/− cells correlates with impaired downstream signaling.
Rescue of mTOR signaling by RagA Q66L

Cystinosin acts upstream of Rags

RagA Q66L - dominant active mutant mimicking GTP-bound state of RagA
Dysregulation of mTOR signaling in Ctns^{−/−} cells due to the absence of cystinosin and not the lysosomal cystine accumulation

No effect of cysteamine on mTOR signaling in Ctns^{−/−} cells
Conclusions (I)

- Dual role of cystinosin
 - lysosomal cystine/proton symporter
 - part of the nutrient-sensing machinery involved in mTORC1 signaling – aminoacid sensor for the mTOR pathway?

- Mechanism for the development of Fanconi syndrome
 - mTOR-vATPase controls megalin expression in Drosophila epithelial cells and PTC in mouse (Gleixner et al., 2014)
 - Gradual loss of cubilin and megalin in Ctns-/ PT (Gaide Chevronnay et al., 2014)

- Low molecular weight proteinuria
Conclusions (II)

- Rationale to explain the apparent discrepancies between phenotype-genotype correlations in patients with juvenile phenotype and no cystine transport

- No effect of cysteamine on mTOR signaling: Need for developing new treatments besides lysosomal cystine depletion

- Other lysosomal amino acid transporters involved in the nutrient-sensing machinery [PAT1 (Ögmunsdóttir et al. 2012), SLC38A9 (Wang et al. 2015; Rebsamen et al 2015, Jung et al. 2015), PQLC2 / LAAT-1 (?)] – Is there a cumulative role of the defects?
What’s ongoing

- Analysis of mTORC1 activity and autophagy in cystinotic mice
- Characterization of the mTORC1 pathway in cell lines bearing the N288K vs. K280R, N323K mutations (CRISPR/Cas9 technology)
- Characterization of the strength of the interactions under aminoacid starvation
- Phenotype of the double KO Ctns/Tsc ?

- Search for modifier genes responsible for the absence of renal disease in the FVB background.
Development of an animal model
Ctns⁻/⁻ knock-out mice

- Sex ratio = 1
- No embryonic lethality
- Normal development and fertility
- No phenotype in the first months of life

- Widespread cystine accumulation increasing with age
- Ocular, muscular and bone abnormalities
 - Osteoporosis
 - Bone mineralization
 - Cortical width
 - Bone deformity
- Renal phenotype dependant upon the genetic background

(Cherqui et al., 2002; Nevo et al., 2010)
Ctns\(^{-/-}\) knock-out mice: renal phenotype dependent upon genetic background

- Proximal tubulopathy and progressive renal failure in C57BL/6 Ctns\(^{-/-}\) mice
 - Failure to thrive
 - Polyuria (from 2 months) with decreased urinary osmolarity
 - Marked increased CC16 excretion (LMW proteinuria)
 - Increased daily urinary excretion of glucose, phosphate and potassium
 - No hyper aminoaciduria
 - Chronic renal failure from 9 - 10 months
 - Great variability between mice even from the same litter

- No renal symptoms in FVB/N Ctns\(^{-/-}\) mice

(Nevo et al., 2009)
Proximal tubular lesions in kidneys of C57BL/6 Ctns -/- mice

- From 6 months, development of focal lesions of proximal tubules mainly in the superficial cortex
- Atrophy with complete disappearance of the epithelial cell layer and thickening of the BM leading to focal disappearance of proximal tubules
- More extensive lesions at 9-12 months
- No tubular lesions up to 18 months in FVB/N Ctns-/- mice
Multiple crystals followed by PTC atrophy

*, swan-neck atrophy; ➤, cystine crystals; ➣, vacuole bulging