# Management of X-linked hypophosphatemic rickets in children and adults



Dieter Haffner

Department of Pediatric Kidney, Liver and Metabolic Diseases

Center for Rare Kidney Diseases





Medizinische Hochschule Hannover

#### **Disclosures**

**Speaker fees/consultancy:** Amgen, Chiesi, Horizon, Kyowa Kirin, Merck-Serono, Pfizer, Sandoz

Research grants: Amgen, Kyowa Kirin, Horizon, Sandoz

# X-linked Hypophosphatemia (XLH)

(Vitamin D-resistant rickets)
(Familial hypophosphatemic rickets)

- Most frequent inherited phosphate wasting disorder, accounting for 80% of cases
- Incidence of 1:20,000 individuals
- Rickets in infancy resistant to high-dose vitamin D (Albright, 1937)
- X-linked dominant inheritance (1958)
  - NB: negative family history in close to 50% of cases
- Evidence for humoral basis:
  - Hypophosphatemia persists after renal transplantation (1974)
  - Kidney cross-transplantation between WT & HYP mice (1992)
- Caused by mutations in the PHEX gene (1995)
- Associated with high plasma FGF23 concentrations (2003)

#### In XLH excess of FGF23 impairs renal phosphate and vitamin D metabolism



#### Clinical features of XLH: Rickets and bone deformities



Thick growth plates Widened knee joints Wide based gait



Coxa vara



Genu varus/valgus

#### Clinical features of XLH: growth retardation

Height < -2.0 SDS in 40% of "well controlled" French XLH patients



#### Clinical features of XLH: disproportional growth

German XLH patients on conventional therapy (n=89)







# Sitting height index (= body proportions)



\*= p<0.001, XLH vs. healthy children

#### Clinical features of XLH: osteomalacia

Defective mineralization Bone pain Pseudofractures (in adults)



#### Clinical features of XLH: degenerative osteoarthropathy









Adults: Ankles 68%

Knee 63%

Sacroiliac 40%

Misalignment & cartilage defect



#### Clinical features of XLH: enthesopathy

(calcification of tendons & ligaments)

Adults:

Ankles 74%

Knee 56%

Pelvis 49%

Spine 41%

Elbow, hand, shoulder 8-28%



Liang. Calcif Tiss Int 2009

Does not respond to conventional treatment

#### Clinical features of XLH: tooth abscesses





Agnes Linglart et al, Endocrine Connections 2014

Hypomineralized dentin Enamel hypoplasia, microdefects Enlarged pulp chambers

#### Clinical features of XLH: other symptoms and complications

Craniosynostosis

Chiari malformation

Syringomyelia

Weight gain



Craniosynostosis
Chiari type I malformation
Spinal stenosis, syringomyelia
Hearing loss, tinnitus, vertigo

# XLH requires lifelong management



# XLH requires management from a range of specialists



#### **Symptomatic treatment**

#### **Symptomatic treatment:**

- Oral phosphorus supplements
- Active vitamin D analogues

#### **Goals:**

- Healing of rickets (AP ≤ 1.5 ULN, improvement of clinical & radiological signs)
- Growth within the lower normal range
- Pain control

#### **Side effects:**

- Nephrocalcinosis (30-70%)
- Hyperparathyroidism





#### Early treatment is associated with better outcome

#### **Limitations of symptomatic treatment**

- Improves symptoms, but does not cure the disease
- Variable response among patients
- Risk of side effects
- Promotes a vicious circle:
   both Pi supplementation and active vitamin D stimulate FGF23 serum levels

## Bone deformities: need for corrective surgery

|                        | Diagnosis | 5 years | 10 years | Near adult |
|------------------------|-----------|---------|----------|------------|
|                        |           |         |          | height     |
|                        | N=90      | N=68    | N=58     | N=41       |
| Corrective leg surgery | 3.3%      | 3%      | 6.9%     | 31.7%      |



# Treatment strategies for adult XLH patients



- 1. Haffner & Waldegger, Pediatric Kidney Disease 2017
- 2. Linglart et al. Endocr Connect 2014; 3. Carpenter et al. J Bone Miner Res 2011;26:1381
- 4. Skrinar et al. Poster SAT-244. Presented at ENDO 2015, San Diego, USA
- 5. Sullivan et al. J Clin Enocrinol Metab 1992;73:879; 6. Che et al. Eur J Endocrin 2016;174:325



#### **Burosumab inhibits serum FGF23**



#### Burosumab for the treatment treatment of XLH

- 52 children (5-12 years) with severe XLH
- 92% (burosumab group) and 100% (controls) being on conventional treatment over a mean period of 7 years
- Conventional treatment was stopped two weeks before start of burosumab



#### **Burosumab for the treatment of XLH**





Carpenter T et al. N Engl J Med 2018, May 23



#### **Burosumab for the treatment of XLH**



#### **Conclusions**

- XLH is a severe disease with significant morbidity
- Requires lifelong multidisciplinary management
- Symptomatic treatment:
  - does not cure the disease
  - has limitations and side effects
- Challenges:
  - growth
  - bone deformities
  - recurrent dental infections
  - adherence
- Burosumab is a promising treatment for XLH
- Important to collect the natural history of disease => prospective registries on treated pts.

Growth and comorbidity in children with XLH:

A prospective observational study & national/international registry

German Society for Pediatric Nephrology

German Society for Pediatric Endocrinology DG:KED



Long-term outcome (conventional / burosemab treatment):

- Growth & body composition
- Musculo-skeletal system
- · Teeth, kidney
- CV status
- · Quality of life
- · Rare complications









Anthropometry Ped. Nephrology Ped. Endocrinology Study Nurse Miroslav Zivicnjak Dieter Haffner Dirk Schnabel Elene Hammer





# Clinical practice recommendations for the diagnosis and management of X-linked hypophosphatemia

Dieter Haffner<sup>1,2</sup>, Francesco Emma<sup>3</sup>, Deborah Eastwood<sup>4,5</sup>, Martin Biosse Duplan<sup>6,7</sup>, Justine Bacchetta<sup>8</sup>, Dirk Schnabel<sup>9</sup>, Philippe Wicart<sup>10,11</sup>, Detlef Bockenhauer<sup>12</sup>, Fernando Santos<sup>13</sup>, Elena Levtchenko<sup>14</sup>, Pol Harvent<sup>15</sup>, Martha Kirchhoff<sup>16</sup>, Federico Di Rocco<sup>17,18</sup>, Catherine Chaussain<sup>19,20</sup>, Maria Louisa Brandi<sup>21</sup>, Lars Savendahl<sup>22</sup>, Karine Briot<sup>23,24</sup>, Peter Kamenicky<sup>25,26</sup>, Lars Rejnmark<sup>27</sup> and Agnes Linglart<sup>28,29,30</sup>

<sup>1</sup>Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany; <sup>3</sup>Department of Pediatric Subspecialties, Division of Nephrology, Children's Hospital Bambino Gesù – IRCCS, Rome, Italy; <sup>4</sup>Department of Orthopaedics, Great Ormond St Hospital for Children, Orthopaedics, London, UK; <sup>5</sup>Royal National Orthopaedic Hospital NHS Trust, The Catterall Unit, Stanmore, UK; <sup>5</sup>Dental School, Université Paris Descartes Sorbonne Paris Cité, Montrouge, France; <sup>7</sup>AP-HP, Department of Odontology and Reference Center for rare diseases of the metabolism of calcium and phosphorus, Nord Val de Seine Hospital (Bretonneau), France; <sup>1</sup>University Children's Hospital Lyon, France; <sup>1</sup>Center for Chronic Sick Children, Pediatric Endocrinology, Charitè, University Medicine, Berlin, Germany; <sup>10</sup>Necker – Enfants Malades University Hospital, Paris, France; <sup>11</sup>Paris Descartes University, Paris, France; <sup>12</sup>University College London, Centre for Nephrology and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; <sup>13</sup>Department of Pediatrics, Hospital University of Leuven - KU Leuven; Leuven, Belgium; <sup>15</sup>RVRH-XLH, French Patient Association for XLH, Suresnes, France; <sup>16</sup>Phosphatdiabetes e.V., German Patient Association for XLH, Lippstadt, Germany; <sup>17</sup>Pediatric Neurosurgery, Höpital Femme Mère Enfant, Centre de Référence Craniosténoses, Neurochirurgie Pédiatrique, Höpital Femme Mère Enfant, Université de Lyon, Bron Cedex, France; <sup>19</sup>Dental School, Université Paris Descartes Sorbonne Paris Cité, Montrouge, France; <sup>20</sup>AP-HP, Department of Odontology and Reference Center for rare diseases of the metabolism of calcium and phosphorus, Nord Val de Seine Hospital (Bretonneau), France; <sup>21</sup>Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; <sup>22</sup>Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; <sup>23</sup>Department of Rheumatology, Cochin Hospital, Assistance Publique-Höpitaux de P

