Primary Hyperoxaluria: more than a stone disease

Jaap Groothoff
Paediatric Nephrologist
Academic Medical Centre
Amsterdam, Netherlands

disclosure

Grants from Alnylam and Dicerna for stable isotope studies

Origin of oxalate

HO-C=O

- Diet
- Synthesis by metabolism:

56 y male: ARF (S-creat 400 mcmol/l) due to oxalate-TIN (U-oxalate 1.1 mmol/d) after 16 8-oz glasses of iced tea daily (4 liter).

Fahd Syed N Engl J Med 2015; 372:1377-1378

Dietary uptake increased by fat malbsorption

2,3-diketogulonic acid

Potent inhibitors of calcium oxalate crystals

1. Citrate:

- Competition with oxalate in calcium binding- > soluble complex
- Citrate protects cells from oxalate crystal induced injury by preventing lipid peroxidation
- 2. Magnesium (over 500 times more soluble than CaOx)
 - Less suitable as therapy (diarrhea, high doses)

Byer K, Khan SR J Urol. 2005 Feb;173(2):640-6.

PH 1: (85-90%): peroxisomal AGT deficiency

Vegetables

-> biomarker: high glycolate

PH1-> mutations cause AGT deficiency because

- 1. Protein is not produced
- 2. Protein is producted, but inactive
- 3. Protein is producted, but unstable:
 - 3a. Degrades rapidly
 - 3b. Aggregates rapidly
 - 3c. Located in the wrong organel: Mitochondrial 'mistargeting'

Mistargeting mutations in PH1

Gly170Arg (+Pro11Leu polymorphism)-> peroxisometo-mitochondrion mistargeting by unfolding -> impaired dimerization:

(partly) reversed by Vit B6 => lowering/normalisation oxalate on B6 therapy:

30% PH1 EU patients

Fargue S, BBA) - Molecular Basis of Disease 1832, Issue 10, 2013, Pages 1776-1783 Danpure C, Molecular Cell Research 1763, Issue 12, 2006, Pages 1776-1784

Hoyer-Kuhn Vitamin B6 in Primary Hyperoxaluria CJASN. 2014 Mar 7; 9(3): 468–477.

PH 2: (85-90%): cytosolic GR deficiency

-> biomarker: high L-glycerate

Vegetables

-> biomarker: high HOG*

*4 hydroxy-2 oxo (keto)-glutarate

Similar high contribution hydroxyproline in PH 2 & PH3

Comorbidity A and other patients

- Multiple fractures (26x)
- impaired vision, retinopathy
- Growth retardation, final height 155 cm
- Hearing loss
- Retarded mental development

Clinical Threshold(s)?

- eGFR < 40 ml/min/1.73m²
- Plasma Oxalate > 30 μmol/L

Systemic oxalosis

Vascular/Skin

Eye

3x 24 hrs urine oxalate and metabolites-> ↑ oxalate excretion (>0.5 mmol oxalate /d or >0.06 mmol/mol creatinine*) -> exclude secondary hyperoxaluria (fat malabsorption, short bowl, IBD) ↑ U-L-glycerate ↑ U-glycolate **↑** U-HOG excretion (PH2) excretion (PH1) excretion (PH3) -> DNA -> DNA -> DNA eGFR< 60: plasma oxalate (& glycolate in PH1) Screening for systemic oxalosis (eye, bone, US heart)

^{*} reference levels higher for children age 0-6 years

Pitfalls diagnostics

- High variability oxalate excretion
- Easy precipitation calciumoxalate -> under detection
- Conversion ascorbic acid into oxalate -> over detection

-> at least 3 consecutive 24 hrs urine collection

Clifford-Mobley et al, Urolithiasis (2016), 44: 333-337

PH1 -> classical theory

Assumption of 3 clinical phenotypes:

- 1. infantile form: 100% renal failure & systemic oxalosis
- 2. juvenile form: urolithiasis, nephrocalcinosis & 50% renal failure
- 3. late onset disease: mild, occasionally stone passage (Mrs A?)

Age at time of symptoms & diagnosis

ESRD in PH1

ESRD at time of diagnosis

- < 18 years (34.3 %)
- > 18 years (73.9%)

Renal impairment – PH2

Age at time of ESRD (Median 42,67, r 23,50 – 74,83)

therapeutic strategies to date

All patients:

- Water: 3 liters/m²/day
- Potassium citrate 0.5 mmol/kg/d
- B6 (5-20 mg/kg/d) for some PH1 subtypes

- eGFR< 40 -> recommendation liver tx or combined liver-kidney tx
- Dialysis -> recommendation liver tx, later k-tx (sequential liver-kidney-tx)
- Dialysis & B6+- > consider only kidney-tx

(A) Plasma oxalate levels during pre-operative HD, intra-operative CVVHDF and post-operative HD in Patient 1 (A) and 2 (B).

Casper F.M. Franssen et al. NDT Plus 2011;4:113-116

Plasma oxalate levels for different dialysis strategies.

solid line -> p-oxalate levels in case of immediate renal tx function

dotted line -> p-oxalate levels in case of absent renal tx function

Casper F.M. Franssen et al. NDT Plus 2011;4:113-116

New therapies

Substrate reduction therapy

- Prevention oxalate production by inhibition precursor
- Method: RNA-interference -> inhibition protein production
- 2 ongoing phase2/3 trials: Dicerna & Alnylam

RNA interference technique

->ds-RNA→cleaved by dicer →small single fragments (iRNA) → bound to activating elements: RNA Induced Silencing Complex (RISC) formation

N-acetylgalactosamine (GalNAc) sugar ligand conjugates iRNA -> vector of iRNA

Asialoglycoprotein Receptor (ASAGPR)

- Highly expressed in hepatocytes
- High uptake
- Efficient delivery to hepatocytes by s.c.
 Injection
- Liver specific
- Proof of principle other iRNA drugs

By courtesy of Alnylam

-> biomarker: high glycolate

Vegetables

PH 1 & GO inhibition by iRNA: further increase glycolate, normalisation oxalate Vegetables

Rare Glycolate oxidase deficiency -> no clinical phenotype

Deficiency well tolerated → increased glycolate excretion

- Single, 8-yr old boy, homozygous GO1 loss-of-function (identified by Dr. Yaacov Frishberg)
 - Dramatic increase in urinary glycolate, with normal oxalate
 - Normal sized kidneys no nephrocalcinosis or nephrolithiasis

Urinary Glycolate (mmol/mol creatinine)	
normal range	< 90
Case	2000

0.30

- GO1 deficient mice are also asymptomatic, normal urinary oxalate
 - Glycolate levels not reported (expect ~20x increase)

Urinary Oxalate

- Breeding GO1 deficient mice with PH1 disease mice (AGT deficient) substantially resolves the UOx levels (Dr. Eduardo Salido)
- Strong validation for the therapeutic premise of glycolate oxidase knockdown

Urinary Oxalate

-/-

GO1 knockdown lowers oxalate in a genetic PH1 mouse model

- Glycolate oxidase activity is decreased > 98% following GO1 siRNA treatment of mice with PH1 (mice deficient in AGT)
- · As expected, glycolate excretion increases dramatically
- Oxalate levels decrease substantially, confirming the therapeutic hypothesis

hypothesis: LDHA is <u>final common pathway</u> glyoxylate conversion to oxalate-> **for all PH?**

Vegetables

LDHA vs GO Inhibition in PH1 Model: Oxalate Suppression

Conclusions

- Important under detection of PH
- Promising new therapies emerging
- Careful selection of patients is warranted for new therapies
- Diagnosis can easily be missed due to high variation in oxalate excretion
- Adult diagnosed PH is associated with adverse outcome
- PH1: 2/3 ESRD at follow up, B6+: late onset ESRD
- Primary Hyperoxaluria is not a benign disease, even if 1st symptoms are mild

Kidney Diseases (ERKNet)

Thank you for your attention

Next Webinar:

June 5th: Gema Ariceta (Barcelona) on Familial hypomagnesemia with hypercalciuria and nephrocalcinosis

